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\maketitle 

\begin{abstract} 

\textbf{Background} Antimicrobial resistance (AMR) is a global health 

concern. High-throughput metagenomic sequencing of microbial samples 

enables profiling of AMR genes through comparison with curated AMR 

databases. However, performance of current methods are often hampered by 

database incompleteness, and presence of homology/homoplasy with other 

non-AMR genes in sequenced samples. 

 

\textbf{Results} We present AMR-meta, a database-free and alignment-free 

approach, based on $k$-mers, which combines algebraic matrix 

factorization into metafeatures with regularized regression. Metafeatures 

capture multi-level gene diversity across main antibiotic classes. AMR-

meta takes in reads from metagenomic shotgun sequencing and outputs 

predictions about whether those reads contribute to resistance against 

specific classes of antibiotics. In addition, AMR-meta employs an 

augmented training strategy that joins an AMR gene database with non-AMR 

genes (used as negative examples). We compare AMR-meta with AMRPlusPlus, 

DeepARG, and Meta-MARC, further testing their ensemble via a voting 

system. In cross-validation, AMR-meta has a median (interquartile) f-

score of 0.7 (0.2-0.9). On semi-synthetic metagenomic data --external 

test-- on average AMR-meta yields a 1.3-fold hit rate increase over 

existing methods. In terms of run-time, AMR-meta is 3x faster than 

DeepARG and 30x faster than Meta-MARC, and as fast as AMRPlusPlus. 

Finally, we note that differences in AMR ontologies and observed variance 

of all tools in classification outputs call for further development on 

standardization of benchmarking data and protocols. 

 

\textbf{Conclusions} AMR-meta is a fast, accurate classifier that 

exploits non-AMR negative sets to improve sensitivity and specificity. 

The differences in AMR ontologies and the high variance of all tools in 

classification outputs call for the deployment of standard benchmarking 

data and protocols, to fairly compare AMR prediction tools.  

\end{abstract} 
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%%% Key points will be printed at top of second page 

\begin{keypoints*} 

\begin{itemize} 

\item AMR-meta is a novel, database-free and alignment-free approach, 

combining matrix factorization with a training strategy including an AMR 

gene database plus non-AMR genes. 

\item On cross-validated results, AMR-meta has a median f-score of 0.7, 

while on external test sets it yields a 1.3-fold hit rate increase over 

existing methods. 

\item AMR-met is 3x to 30x faster than state-of-the art algorithms. 

\end{itemize} 

\end{keypoints*} 

 

\section{Introduction} 

 

Antimicrobial resistance (AMR) is the ability of microorganisms to resist 

the effect of drugs targeted to eliminate them 

\cite{von2016dissemination}, and is globally recognized as a threat to 

public health as it makes treatment of microbial infections harder, 

increasing the risk of disease spread and severity 

\cite{ventola2015antibiotic}.  Data from 890 U.S. hospitals collected on 

specific combinations of antibiotics and bacteria show that AMR caused an 

estimated 622,390 infections in 2017 \cite{jernigan2020multidrug}. 

Treating infections caused by AMR is clinically challenging since it 

requires to identify which drugs the infecting strain is susceptible to, 

and then to take a timely decision on the therapy to use. Notably, AMR is 

not limited to healthcare, as it represents a significant challenge also 

in animal and plant health, and thus in the entire ecosystem 

\cite{nelson2019antimicrobial}. Therefore, detecting AMR in clinical, 

veterinarian, and botanical isolates is pivotal to curb the spread of AMR 

pathogens and reduce its impact. Although culture-based methods can 

accurately detect AMR, they are resource intensive with respect to 

trained personnel, monetary cost, and time 

\cite{hugenholtz2002exploring}.  Moreover, since only a fraction of 

bacterial species are cultivable with standard methods, culture-based 

methods are only applicable to a small number of bacteria.  For these 

reasons, whole genome and metagenomics sequencing has become an 

increasingly prevalent method for AMR characterization. The challenge 

that then arises is how to accurately identify and quantify the AMR genes 

from such sequencing data.  To accomplish this, a number of different 

methods have been proposed. Despite the concordance between in silico 

genotypic and in vitro phenotypic resistance assessment, the uptake of 

AMR prediction tools for routine healthcare has been slow, and they 

showed discordant performance in clinical settings 

\cite{doyle2020discordant}. 

 

% databases 

AMR prediction methods for metagenomics rely on comparison to databases 

of AMR genes. Two comprehensive and widely used of AMR databases are the 

Comprehensive Antibiotic Resistance Database (CARD) 

\cite{jia2016card,alcock2020card} and MEGARes 

\cite{lakin2017megares,doster2020megares}. CARD is thoroughly maintained, 



with monthly updates on AMR determinants that have (i) an associated 

peer-reviewed scientific publication, (ii) a DNA sequence available in 

GenBank, (iii) clear experimental evidence of elevated minimum inhibitory 

concentration over controls. Currently, CARD integrates over 3,000 

reference sequences of AMR genes and over 1,500 single nucleotide 

polymorphisms, knowledge on resistance mechanisms, and specific 

antibiotic classes. CARD uses a manually curated process and ontology, 

named the Antibiotic Resistance Ontology (ARO, 

\href{https://www.github.com/arpcard/aro}{github.com/arpcard/aro}), which 

describes the molecular relations of antibiotic resistance (e.g., 

acquired resistance genes, drug targets, AMR mechanisms).  MEGARes 

\cite{lakin2017megares} --and its most recent 2.0 update 

\cite{doster2020megares}-- is a hand-curated AMR database designed for 

high throughput sequencing data processing. MEGARes includes CARD genes 

and variants, but utilizes a different annotation structure. 

Specifically, it is a multi-level hierarchy (type, mechanism, class, 

group) in the form of a direct acyclic graph, ensuring that  two higher 

level ranks are not linked to the same lower level rank. MEGARes 

annotation graph is therefore an optimal  structure for ecological 

profiling and construction of AMR classifiers because, for example, it 

cannot result in conflicting sequence classification. MEGARes 2.0 

currently includes $\sim$8,000 genes. Major improvements from its first 

release consist in the inclusion of antibacterial biocide and metal 

resistance genes.   

 

% alignment methods 

For AMR classification of metagenomic samples from high-throughput 

sequencing, one class of methods is based on the use of sequence read 

aligners. One widely used tool in this category is AMRPlusPlus 

\cite{lakin2017megares}, which aligns all reads to MEGARes using Burrows-

Wheeler Aligner (BWA) \cite{li2010fast} and then post-processes the 

alignment to identify the genes that have over 80\% coverage from the 

alignment, providing the associated AMR annotation in the output.  

AMRPlusPlus 2.0 \cite{doster2020megares} is an improved version of 

AMRPlusPlus that is designed to be faster for large-scale projects. 

AMRPlusPlus 2.0 provides a post-alignment classification through the 

ResistomeAnalyzer (quality measure for nucleotide coverage of a reference 

sequence for a given read) and the RarefactionAnalysis (assessment of 

sequencing depth) modules. It also incorporates prediction of AMR due to 

single nucleotide polymorphisms in housekeeping genes, using a curated 

set that matches CARD. Of note, CARD also performs AMR prediction for 

housekeeping genes via the Resistant Gene Identifier (RGI), available as 

a web-service and a command-line application. Although alignment-based 

methods have high precision \cite{lakin2019hierarchical}, they can only 

classify reads which align to known AMR genes. Given that existing AMR 

databases are incomplete, a large portion of novel AMR genes may go 

undetected.  

 

% alignment-free methods &  ML approaches 

Another class of methods for AMR characterization is alignment-free, 

employing a variety of approaches including substring ($k$-mer) matching 

and machine learning.  ResFinder \cite{bortolaia2020resfinder} and 

KmerResistance \cite{clausen2016benchmarking} process metagenomic reads 

by first constructing the set of all unique $k$-length subsequences 



(called $k$-mer spectrum) from the dataset. ResFinder 4.0 compares the 

set of unique $k$-mers to detect AMR genes and AMR-related chromosomal 

gene mutations based on an reference database built on a collection of 

chromosomal point mutations in bacterial pathogens 

\cite{zankari2017pointfinder}, resistance genes from the Antibiotic 

Resistance Genes Database (ARDB) \cite{liu2009ardb} and other literature 

sources \cite{zankari2012identification}.  The user is required to input 

a specific bacterial species for which the resistance is searched. Eight 

bacterial species are available. KmerResistance, as ResFinder, compares 

the set of unique $k$-mers to an ad hoc gene AMR reference database 

derived from literature 

\cite{zankari2013genotyping,stoesser2013predicting}. Specifically, 

KmerResistance uses exact co-occurring $k$-mer matching between a query 

sequence and the database, with a ``winner takes all'' strategy, i.e., 

multiple $k$-mer occurrences on different genes are resolved by selecting 

the one with highest frequency. Next, a quality measure of a whole AMR 

gene match is defined as a probability function of coverage (i.e., 

fraction of the genome covered by at least one $k$-mer) and depth (i.e., 

average number of times the $k$-mers in the match). Similar to alignment-

based methods, ResFinder and KmerResistance are also bound to identifying 

genes that are found in a specified database, and therefore, have limited 

ability to detect putative AMR sequences. Another limitation of the $k$-

mer based approaches is the low flexibility with respect to sequencing 

errors \cite{clausen2016benchmarking}, possibly increasing false negative 

rates in sequence classification. 

 

Other alignment-free methods use machine learning classifiers to identify 

putative and known AMR genes, such as Resfams \cite{gibson2015improved} 

and Meta-MARC \cite{lakin2019hierarchical}, both based on hierarchical 

hidden Markov models (HMMs). Resfams \cite{gibson2015improved} 

preprocesses high-throughput sequences by assembling them and translating 

the resulting contigs into amino acid sequences. Meta-MARC can predict 

AMR for an input sequence (either a short read or a longer assembled 

contig), according to the resistance class, group, and mechanism 

hierarchy defined in the MEGARes hierarchical data structure. 

Specifically, Meta-MARC is an ensemble of HMMs, each trained on a group 

of genes from MEGARes. A classification is performed by aggregating 

predictions from the lowest level of the MEGARes annotation hierarchy 

towards the highest level. Meta-MARC achieves better sensitivity, 

specificity, fraction of classified high-throughput sequence data, and 

number of AMR classes identified when compared to alignment matches and 

Resfams. However, the performance of Meta-MARC with short read data is 

worse than classifying assembled contigs.  

 

DeepARG \cite{arango2018deeparg} is a hybrid machine learning and 

alignment-based approach that leverages convolutional deep learning 

networks. The alignment module first translates the input sequences to 

amino acids and using DIAMOND \cite{buchfink2015fast}, and then aligns 

the translated sequences to a custom AMR database created by merging 

CARD, ARDB \cite{liu2009ardb}, and manually selected AMR sequences from 

the Universal Protein Resource (UNIPROT). The deep learning model then 

predicts the AMR class for all aligned reads. Since the machine learning 

step is subsequent to the alignment one, de facto DeepARG suffers from 

the limitations of alignment-based AMR prediction algorithms. 



 

% methods not based on metagenomics 

For completeness, it is worth mentioning AMR gene identification methods 

that are not specifically designed for high-throughput short read 

metagenomic data. These methods take as input one or a combination of: 

single genes, specific genome strains, genomic or proteomic variants, 

and/or protein primary, secondary, or tertiary structures. Similar to the 

methods described previously, these methods use alignment and/or machine 

learning paradigms 

\cite{davis2016antimicrobial,kavvas2018machine,srivastava2018blapred,mahe

2019large,drouin2019interpretable,ruppe2019prediction,kim2020vampr,Marini

2021}. These algorithms bind the user into performing one or more 

supplementary pre-processing steps on metagenomics data, not included 

into the algorithm, such as sequence alignment or assembly, sequence 

translations into proteins, or protein structure prediction. Because of 

the required pre-processing, these methods defy the very advantages 

provided by the alignment-free design. For further reference, Hendriksen 

et al. \cite{hendriksen2019using} provide a comprehensive review. 

 

While our work focuses on raw short-read AMR classification, we duly note 

that in the wider field of computational microbiomics, a variety of 

bioinformatics approaches exist and can be combined at different levels, 

from the characterization of species diversity in commensal and 

pathogenic host-ecological settings, to the identification of {\em novel} 

AMR genes or genetic elements relevant to AMR mechanisms and evolution. 

The de novo assembly methods can reconstruct complete AMR genes from 

short read data, locate them within core genomes or mobile elements, and 

assemble new genes that could be associated with phenotypic resistance; 

for example, the MegaHIT project \cite{megahit} assembled the world’s 

largest collection of gut microbiome genes with functional 

characterization. Also, the de novo assembly methods can be used to 

preprocess raw short read data for AMR classification 

\cite{kim2020vampr}. Fast alignment methods can be used as well to 

quickly identify genetic signatures or point mutations responsible for 

AMR, e.g., in housekeeping genes, and map very large metagenomics samples 

to databases of interest, such as 16S rRNA gene collections 

\cite{hum_microb_proj}. 

 

%contribution 

In this paper, we develop {\em AMR-meta}, a novel, alignment-free, AMR 

classification approach for high-throughput metagenomic data, based on 

$k$-mers and matrix factorization of $k$-mers. The matrix factorization 

produces a number of `metafeatures' able to capture multiple levels of 

gene diversity within broad AMR classes. 

Importantly, and differently from existing methods, AMR-meta uses an 

augmented training strategy that incorporates non-AMR genes as negative 

examples.   

We show that our approach is competitive with state-of-the-art tools 

(i.e., AMRPlusPlus 2.0, Meta-MARC, and DeepARG) in classification 

performance and execution speed. Notably, AMR-meta captures resistance 

mechanics complementary to those found by other tools, which instead are 

more correlated to each other. 

 

% ************************************************************** 



\section{Methods} 

 

AMR-meta is trained and tested first on an internal dataset that --

differently from other approaches-- includes both AMR (named resistant) 

and non-AMR genes (named susceptible). The AMR genes are taken from 

MEGARes 2.0 \cite{doster2020megares}, while non-AMR genes are chosen from 

Genbank's RefSeq and include (a) bacterial genes that are highly 

dissimilar to AMR genes, and (b) AMR-homologous sequences, i.e. sequences 

highly similar to AMR genes, but not known to be associated to antibiotic 

resistance. By including the non-AMR and AMR-homologous sequences, we aim 

to decrease the false positive calls and to increase the true negative 

rates. This internal dataset  is split into a 70/30 training/test ratio, 

and AMR-meta components ($k$-mers and $k$-mer-derived metafeatures) are 

trained and tested accordingly (all performance measures reported in this 

paper are relative to test sets). Second, we generate two semi-synthetic 

external datasets, drawing bacterial genomes from the Pathosystems 

Resource Integration Center (PATRIC) \cite{davis2020patric}, and 

simulating short read data. We derive two PATRIC datasets that represent 

drug resistance/susceptibility relative to specific molecules or 

antibiotic classes, called PSS$_{mol}$ and PSS$_{cla}$, respectively. 

This twofold design allows us to benchmark AMR-meta against other 

existing tools --AMRPlusPlus 2.0, Meta-MARC, and DeepARG-- in a a 

flexible way, since their outputs levels vary among antibiotic classes 

and more specific mechanisms. We use PSS$_{mol}$ to score the AMR 

predictions, and PSS$_{cla}$ to estimate the concordance of AMR-meta 

class predictions with those of other methods. Finally, we combine AMR-

meta with the other tools, and evaluate their predictions on two 

functional metagenomic datasets that were sampled a clinical and 

environmental setting. %, used as benchmarks to test Meta-MARC among 

others \cite{lakin2019hierarchical}. 

Our internal/external workflow is summarized in Figure \ref{fig:schema}. 

 

\begin{figure*}[h] 

\centerline{\includegraphics[width = 0.9\textwidth]{Figure_1_AMR-

meta.eps}} 

\caption{AMR-meta training/test workflow. We assemble an internal dataset 

of AMR and non-AMR homologous genes from MEGARes and RefSeq genes, on 

which AMR-meta models ($k$-mers, and metafeatures through matrix 

factorization) are trained and tested (70/30 split). AMR-meta and other 

AMR classification tools are then externally tested on: (i) semi-

synthetic data from PATRIC at both antibiotic class and molecule levels 

(PSS$_{cla}$ and PSS$_{mol}$); and (ii) functional metagenomics data 

(Soil and Pediatric).} 

\label{fig:schema} 

\end{figure*} 

 

\subsection{Feature encoding and prediction models}  

\subsubsection{AMR-meta $k$-mer LASSO module} The baseline models of AMR-

meta are logistic regressors --one for each antibiotic class-- that use 

raw $k$-mers as input. Each model utilizes the whole class-specific $k$-

mer spectrum (derived from the collated positive/negative training 

datasets), where each feature is a binary value, representing the 

presence or absence of a particular $k$-mer in the dataset. Given the 

high-dimensionality of the $k$-mer spectrum, we use least absolute 



shrinkage and selection operator (LASSO) regularization to reduce the 

feature space, optimizing the shrinkage operator via cross-validation 

\cite{GLMNET}. Given the heterogeneity in gene diversity within each 

class, e.g. Betalactamases have higher diversity than Floroquinolones, we 

also expect different cardinality of non-zero coefficients among the 

class-specific $k$-mer LASSO regressors. 

 

\subsubsection{AMR-meta metafeature ridge module} One possible problem 

with $k$-mer LASSO regression is that a single linear combination of $k$-

mer features might not be able to explain the variance of the entire 

dataset, even if discrimination performance is good for the majority of 

genes in one class. A way to increase the portion of variance explained 

is to use more than one linear combination, e.g., the first $m$-th 

vectors of a principal component analysis. In this way, multiple 

independent combinations of $k$-mers can more effectively represent the 

genetic diversity within antibiotic classes. 

 

Accordingly, we explore a space transformation --with concomitant 

dimension reduction-- of the $k$-mer spectrum that identifies a set of 

(orthogonal) multiple features, i.e., metafeatures, each as an 

independent combination of the original $k$-mers contributing to a 

cumulative portion of the data variance. To do so, we apply a matrix 

factorization approach, which has been previously shown apt to tackle 

complex feature extraction problems, e.g., oncology and proteomics 

\cite{vitali2018patient,marini2019protease}. The method is based on non-

negative matrix tri-factorization \cite{vzitnik2014data}. The algorithm 

identifies low-rank, non-negative matrices whose product provides an 

approximation of the original non-negative matrix. 

 

 Here we consider two data domains, namely $k$-mers and genes. A $k$-mer 

is related to a gene if it is present in the gene sequence. Let us denote 

the total number of genes with $g$; the total number of $k$-mers with 

$t$; a matrix of $r$ rows and $c$ columns having all values equal to zero 

with $\varnothing_{r,c}$; and a matrix with one gene per row, and one 

$k$-mer per column $R_{g,t}$ with, and $R_{g,t}^T$ as its transpose.  

We denote the transpose of a matrix $A$ with superscript $T$ as $A^T$ in 

the rest of this paper. 

We express the relation between the two domains by a symmetrical, four-

block matrix $R=\big(\begin{smallmatrix} 

\varnothing_{g,g} & R_{g,t} \\ 

%R_{t,g} 

R_{g,t}^T & \varnothing_{t,t} 

\end{smallmatrix}\big)$, where non-diagonal block matrices represent the 

relation (intersections) between $k$-mers and genes. Note that in this 

context, the relation between elements is defined by design: We set the 

value of a $R$ at an entry to $1$ if the corresponding $k$-mer is present 

in the corresponding gene, and $0$ otherwise.\\ 

 

We denote the number of $k$-mer metafeatures and the number of gene 

metafeatures as $m_{t}$ and $m_{g}$, respectively. The factorization 

procedure decomposes $R$ into the product of three matrices $G$, $S$, and 

$G^T$, such that $G \times S \times G^T$ will approximate $R$ by reducing 

the error up to a user-defined lower bound set as the difference between 

two consecutive iterations (denoted with $R \approx GSG^T$).  



Here $G$ represents the relation between the original domains (genes, 

$k$-mers) and their metafeatures; and $S$ represents the relation between 

the metafeatures, i.e., how one domain is mapped to the other. 

The matrices $G$ and $S$ have the following form both expressed as four 

block matrices: 

 

$G=\big(\begin{smallmatrix} 

G_{g,m_{g}} & \varnothing_{g,m_{t}} \\ 

\varnothing_{k,m_{g}} & G_{t,m_{t}} 

\end{smallmatrix}\big)$ and $S=\big(\begin{smallmatrix} 

S_{m_{g},m_{g}} & S_{m_{g},m_{t}} \\ 

S_{m_{t},m_{g}} & S_{m_{t},m_{t}} 

\end{smallmatrix}\big)$. 

 

We use the intersection between the data of the same domain as 

constraints in the factorization process, i.e., each domain has a block, 

symmetrical constraint. We define the matrix $\Theta$ to represent the 

self-domain relations, i.e., gene/gene and $k$-mer/$k$-mer relations. 

Therefore, $\Theta$ is an $R \times R$ matrix. The empty blocks of 

$\Theta$ are the non-diagonal blocks. $\Theta = \big(\begin{smallmatrix} 

\Theta_{g,g} & \varnothing_{g,t} \\ 

\varnothing_{t,g} & \Theta_{t,t} 

\end{smallmatrix}\big)$.\\ 

 

In $\Theta$ we set each entry to $-1$ if the corresponding row and column 

elements share a relation; $1$ if unrelated; and $0$ if the relation is 

unknown. In this application, in the $\Theta_{t}$ block we consider each 

$k$-mer identical to itself (related, $-1$), while we make no assumption 

about the relation with two different $k$-mers (not related, $0$). In the 

$\Theta_{g}$ block, we consider all the genes of each class to be related 

($-1$), and different from the genes of other classes ($1$). 

 

The goal of the factorization is to minimize the following objective 

function: 

\begin{equation} 

min_{G \geq 0}(G;S) = \sum{ ||R_{ij} - G_{i}S_{ij}G_{j}^{t} || + 

tr(G\Theta G^t)} 

\end{equation} 

 

where $||\cdot||$ indicates the Frobenius norm, and $tr(\cdot)$ indicates 

the trace. The objective function is composed of two parts: The first 

part measures the difference between the original matrix and the product 

of the three factorized matrices; the second part calculates the 

adherence of the factorized metafeatures to the constraints, in our case 

based on the AMR resistance class. The factorization process proceeds in 

an iterative fashion until convergence to a local minimum, with 

convergence heuristically defined by observing the value of the objective 

function and the corresponding reconstruction error below a user-defined 

threshold \cite{vzitnik2014data,vitali2018patient,marini2019protease}. We 

fix a threshold of $10^{-2}$ as the difference between consecutive 

iterations, or reaching 5,000 iterations, as stop criteria. Previous 

works discuss the method in detail 

\cite{vitali2018patient,marini2019protease}; a dedicated github 

repository contains code and user manual 



\href{https://www.github.com/smarini/MaDDA}{github.com/smarini/MaDDA}. 

The factorization process, calculated over the full length training 

genes, produces $G_{{t},m_{t}}$, which is the matrix relating the $k$-

mers to their metafeatures. For each short read pair encoded as binary 

vector of $k$-mer occurrences $sr_{1,t}$, we calculate its metafeatures 

as $sr_{1,t} \times G_{t,m_{t}}$. Since the optimal number of 

metafeatures can be hard to infer, and the sizes of the matrices grow 

with the number of features \cite{vitali2018patient,marini2019protease}, 

for this application we used up to $m_{t} = 100$ and $m_{g}=25$ 

metafeatures. After factorization, we feed the metafeatures to a logistic 

regression, optimizing the coefficients with a ridge approach. Figure 

\ref{fig:matr_fact} provides a graphical representation of the 

factorization process. 

 

%\begin{figure*}[h!] %[b]%figure1 

%  

\includegraphics[width=0.9\textwidth]{figure.matrix.factorization.l.eps} 

%  \caption{The matrix tri-factorization scheme. AMR, non-AMR, and AMR-

homologous genes are paired up with $k$-mers across all antibiotic 

resistance classes into the $R$ matrix, and the the dimension is reduced 

through the $R \approx GSG^t$ factorization, where the metafeatures are 

extracted, revealing the AMR similarity phenotypes in the $\theta$ 

matrix.}\label{fig:matr_fact} 

%\end{figure*} 

 

\begin{figure}[h] 

\begin{center} 

\includegraphics{figure.matrix.factorization.l.eps} 

\end{center} 

\caption{The matrix tri-factorization scheme. AMR, non-AMR, and AMR-

homologous genes are paired up with $k$-mers across all antibiotic 

resistance classes into the $R$ matrix, and the the dimension is reduced 

through the $R \approx GSG^t$ factorization, where the metafeatures are 

extracted, revealing the AMR similarity phenotypes in the $\theta$ 

matrix.} 

\label{fig:matr_fact} 

\end{figure} 

 

\subsection{Training strategy} 

\subsubsection{AMR genes.} We collate AMR genes from MEGARes 2.0 

\cite{doster2020megares}, constituting the positive (resistant) reference 

sets on the basis of the MEGARes annotation at the antibiotic class 

level. Of note, we exclude housekeeping genes that confer resistance 

through single point mutations. %The negative (susceptible) data and 

labelling was then constructed in multiple ways, as follows. 

 

\subsubsection{Putative non-AMR bacterial genes.} We include putative 

non-AMR genes from the RefSeq database \cite{o2016reference}. Using 

BLAST, we select the 1,000 RefSeq bacterial genes that do not match to 

MEGARes (e-value=10), aiming for a 1:1 target ratio with the antibiotic 

class of highest frequency. This gene set has high genetic divergence 

from the AMR genes in MEGARes, yet the nucleotide content is fully 

bacterial. 

 



\subsubsection{AMR-homologous human and vertebrate genes.} To mimic genes 

that likely do not provide AMR, but share a significant similarity with 

AMR genes we assemble a dataset selecting AMR-homologous genes and gene 

fragments from the human genome (GRCh38), and all the contigs in RefSeq 

labelled as 'vertebrate mammalian' and 'vertebrate other' assemblies. To 

do so, we run an ungapped BLAST search of all MEGARes genes against these 

human and vertebrate sequences (e-value=0.01). We use each unique 

sequence match, and add the flanking region to each match, elongating the 

matched sequence to be equal in length to the corresponding resistant 

MEGARes gene. Specifically, with a match of $n_{match}$ nucleotides 

between target and query AMR gene, we extend the match by 

$\frac{n_{match}}{2}$ nucleotides in both directions on the target 

MEGARes sequence. The underlying assumption here is that matches of 

bacterial AMR genes on vertebrate genomes are spurious or not functional, 

and therefore do not provide AMR. Of note, this setup is similar to the 

test set derivation presented in DeepARG \cite{arango2018deeparg}. 

 

\subsubsection{k-mer based and metafeature modelling.} All $k$-mers 

present in the genes of the training datasets, excluding any sample 

reserved for validation (see next subsection), are considered and counted 

using different values of $k$, from 13 to 77 based on prior literature 

evidence \cite{clausen2016benchmarking}. The best value for $k$ is chosen 

incrementally on the basis of internal validation performance, stopping 

when performance decreases. Next, we stratify the training samples by 

class. We remove all $k$-mers with a frequency less than a given cut-off 

$f$ in a single class (3 or 5 upon internal validation). We also exclude 

AMR classes with with less than 10 $k$-mers after frequency filtering. 

 

\subsubsection{Simulation of metagenomic short read data for training.} 

We use the AMR datasets described above to generate short reads, 

labelling each as resistant or susceptible to an antibiotic class. For 

each MEGARes class, we generate short read datasets providing 10x base 

coverage of the original full-gene data. These datasets allow the 

evaluation of both false positives and false negatives. %(see paragraph 

below for details on simulation software used and parameter setup).  

 

%\paragraph*{Internal validation.} We split the simulated short read 

datasets into 70\% and 30\%, stratified by class, using the 30\% as test 

data to evaluate per-class sensitivity (true positive rate), specificity 

(true negative rate), f-measure ($F_1$ score, which is the harmonic mean 

of precision and sensitivity), and Matthew's correlation coefficient 

(MCC). 

 

\subsection{External validation} 

We use four independent external datasets, two semi-synthetic (made 

similarly to the training set), and two from functional metagenomic 

experiments. As the prevalence of AMR and the $k$-mer spectrum in the 

external test set is not guaranteed to be balanced as in the training, we 

re-calibrate the $k$-mer and metafeature probability threshold for 

external validation using the internal validation dataset and a number of 

samples where the $k$-mer and metafeature vectors are empty, i.e., they 

represent the non-AMR gene background. The ratio is optimized between 

1:0.05 and 1:10, picking the first that meets the calibration target, 



i.e., a prediction with a score $<0.5$ for a feature vector without any 

$k$-mer belonging to our model. 

 

\subsubsection{Semi-synthetic datasets.} We create the semi-synthetic 

datasets from PATRIC, downloading via FTP full bacterial genomes and 

summary metadata  \cite{Marini2021,davis2016antimicrobial}. We retain 

only genomes annotated as susceptible or resistant after an antibiogram 

test conform to the Clinical \& Laboratory Standards Institute (CLSI), 

which is the most frequent testing standard in PATRIC, with over 55,000 

resistant and 54,000 susceptible records \cite{Marini2021}. Since the 

antibiotic nomenclature in PATRIC is molecule-specific and does not match 

exactly the MEGARes ontology hierarchy, we compile a lookup table linking 

each PATRIC drug annotation to a MEGARes class. We remove PATRIC genomes 

that do not refer to the AMR classes considered in the training phases, 

or are not included in the classes predicted by the concurrent methods. 

 

We then generate two PATRIC semi-synthetic datasets (PSS), based on 

PATRIC antibiotic molecule labels (PSS$_{mol}$) and MEGARes classes 

(PSS$_{cla}$), respectively. 

 

We use PSS$_{mol}$ to assess the performance of our approach and the 

concurrent methods on molecule-specific data. We retain genomes are 

resistant (or susceptible) to at least one MEGARes class. We rank the 

PATRIC drug labels based on number of associated genomes, and we select 

the top ones based on the associated MEGARes classes. We exclude labels 

with less than 250 genomes, or labels not referring to a specific 

molecule (e.g., Tetracycline). We generate 250,000 short reads for each 

PATRIC label, equally divided between resistant and susceptible. Note 

that for PSS$_{mol}$, as the PATRIC labels refer to genome (and not the 

specific gene, as in MEGARes), it is not possible to determine the ground 

truth, i.e., if a short read comes from a resistant or a susceptible 

gene. To assess methods' performances, in absence of such ground truth, 

we develop a scoring system based on the assumption that a method should 

find more resistant read pairs from resistant genomes, and less from 

susceptible genomes. With $sr_{res,res}$ defined as the number of short 

read pairs coming from resistant genomes and classified as resistant, and 

with  $sr_{res,sus}$ as the number of short read pairs coming from 

susceptible genomes and classified as resistant, we define the $S$-score 

as $S=sr_{res,res}-sr_{res,sus}$. A higher $S$-score thus denotes better 

performance, and a negative value implies that the method finds more 

resistant short read pairs among the susceptible ones. 

 

PSS$_{cla}$ is collated at the class level. Unlike PSS$_{mol}$, each 

short read from PSS$_{cla}$ has a known label which indicates if it comes 

from a resistant or susceptible gene. To generate PSS$_{cla}$, first we 

remove PATRIC genomes presenting inconsistent class annotations, i.e., 

that are annotated as both resistant and susceptible to antibiotics 

belonging to the same class. Second, in order to consider only genomes 

that are resistant (or susceptible) to the range of antibiotics within a 

given MEGARes class, we rank each genome in decreasing order of the total 

number of annotations of resistance (or susceptibility) to multiple drugs 

within the same class. Based on this ranking, we retain only genomes that 

rank over the 90th percentile. Third, we perform a class-by-class BLAST 

filtering (e-value=0.01, percent identity $\in [70, 90]$) of the selected 



PATRIC genomes against MEGARes genes, retaining and clipping the unique 

genes of PATRIC genomes that match MEGARes. The objective is to extract a 

set of PATRIC genes that match to MEGARes genes, but are not exact 

matches. In fact, genes similar to known resistant genes coming from 

antibiotic susceptible --by a phenotypic test-- genomes represent 

excellent candidates to test the ability of classifier to recognize 

true/false positives.  From these selected PATRIC genes, we generate 

short reads covering the selected genes, and capping the number of 

resistant or susceptible paired reads up to 100,000 per AMR class (i.e., 

400,000 total reads per class). We reckon that with this procedure, we 

are able to label uniquely each PATRIC instance that passes the filter; 

however, in the BLAST alignment, there could be flanking regions or 

inserts that produce artifact matches. Nonetheless, given the strict 

parameters used, we we deem these cases to be rare. A resistant sample 

likely contains only resistant reads, and vice-versa for a susceptible 

sample. Therefore, it is possible to calculate sample-wide performance by 

counting the proportion of resistant-within-resistant and susceptible-

within-susceptible reads in each test sample. After filtering, 

Glycopeptides and Lipopeptides are excluded as there are less than 

fifteen resistant genomes. Sulfonamides are excluded as no susceptible 

genomes is retained by our filtering procedure. 

 

\subsubsection{Functional metagenomics data.} We benchmarked our method 

against two functional metagenomic datasets, which we refer to as the 

Pediatric and the Soil datasets (NCBI BioProject Accessions PRJNA244044 

and PRJNA215106). A functional metagenomics experiments is made by 

cloning metagenomic DNA fragments into bacterial vectors grown on 

antibiotic-laden media. The cultured bacteria surviving the antibiotic 

are sequenced using a clonally amplified high-throughput sequence 

library. As per experimental design, for each fosmid, all sequence reads 

contain at least one AMR gene (known or not yet discovered) resistant to 

a known antibiotic. Therefore, each sequencing experiment has a known 

antibiotic resistance label. However, since the original metagenomics 

fragments can be longer than a single AMR gene, a single fosmid might 

contain multiple AMR genes, or contain unknown genes. The Pediatric and 

Soil datasets include fosmids from Escherichia coli (DH10B) and consist 

of of 219 and 169 samples with an average of 1.98 and 1.12 million 

paired-end short reads respectively, sequenced with Illumina Genome 

Analyzer IIx technology. We utilize the aforementioned PATRIC annotation 

lookup table to pair antibiotic annotations to MEGARes classes. For 

testing classifiers' performance, we randomly select 100,000 short read 

pairs for each class as for the PATRIC datasets. 

 

\subsection{Software and hardware setup} We process the 

training/validation data, the semi-synthetic PSS$_{mol}$ and PSS$_{cla}$ 

datasets, and the experimental functional metagenomics data through in 

house UNIX scripts, off-the-shelf bioinformatics tools including BLAST, R 

(\href{https://www.r-project.org/}{r-project.org/}), and Bioconductor 

(\href{https://www.bioconductor.org/}{bioconductor.org/}). The $k$-mer 

LASSO and the metafeature regression are developed in R, bash, and C++.  

We download the functional metagenomics datasets using NCBI's sra-

toolkit. For short read generation, we use InSilicoSeq 

\cite{gourle2019simulating}, simulating Illumina's NovaSeq (company's 

top-line production scale sequencing instrument) reads with default 



parameters. We exclude genes shorter than 151 bases (length of NovaSeq's 

short reads) from the simulations. Code and R scripts are available 

publicly at \href{https://www.github.com/smarini/AMR-

meta}{github.com/smarini/AMR-meta} under the MIT license. 

 

\section{Results} 

\subsection*{ 

AMR-meta provides competitive prediction performance on multiple AMR 

classes 

%AMR-meta captures substantial intra-class gene diversity in the internal 

datasets and provides competitive prediction performance 

} 

We generate thirteen datasets, corresponding to the antibiotic classes 

(according to the MEGARes ontology) of: Aminoglycosides, Betalactamases, 

Drug and biocide resistance, Fluoroquinolones, Glycopeptides, 

Lipopeptides, Macrolide-Lincosamide-Streptogramin (MLS), Multi-biocide 

resistance, Multi-drug resistance, Multi-metal-resistance, Phenicols, 

Sulfonamides, and Tetracyclines. We exclude classes with less than 10 

$k$-mers after frequency filtering. Upon internal validation, the best 

$k$-mer length $k$ and frequency threshold $f$ are 13 and 5, respectively 

(the performance decreases at $k$=31 and for $f$=3 with the same or 

higher $k$). Upon optimization of the $k$ value, the total number of 

unique $13$-mers is 138,260, and the median (interquartile range, IQR) 

number per class is 3,645 (1,658-7,168). The matrix factorization 

includes 5,175 training genes, yielding a matrix $R$ of 138,260 + 5,175 = 

143,435 rows and columns, and a $k$-mer/metafeature matrix of $138,260 

\times 100$ elements. 

 

Table \ref{table1} shows the class-specific performance summaries by $k$-

mer and metafeature regression on the internal validation sets. On the 

internal validation set, the $k$-mer LASSO and the metafeature regression 

exhibit a good tradeoff between sensitivity and specificity at both $k$ 

values. The median (IQR) number of features selected by $k$-mer LASSO is 

12,783 (12,304 and 13,179). As expected, the highest number of non-zero 

coefficients is found in the Betalactamase class, which is the class with 

higher diversity and number of resistant genes in MEGARes. The same holds 

for the highest number of metafeatures with positive coefficients (note 

that each metafeature is derived from the matrix factorization described 

above, incorporating several hundred thousands $k$-mer/gene elements). In 

terms of performance, for LASSO, the median (IQR) f-measure across all 

classes is 0.7 (0.2-0.9), while for the metafeature regression, the 

median f-measure is 0.4 (0.2-0.7). For both methods, the best performing 

classes are Betalactamases, and Fluoroquinolones, while the most 

problematic are MLS, and Multi-biocide, -drug, and -metal resistance. 

Despite the $k$-mer LASSO having a higher median f-measure, the 

metafeature regression performs better in the problematic MLS and Drug 

and biocide classes, shows better sensitivity in Glycopeptides, and 

better Specificity in Fluoroquinolones and Lipopetides. For reference 

comparison, the median (IQR) f-measure across classes is 0.5 (0.3-0.7) 

for DeepARG, and 0.9 (0.9-1.0) for Meta-MARC, based on the original 

papers' validation results. AMRPlusPlus 2.0 does not report per-class 

results on test sets. 

 

\begin{table*}[t] 



\caption{Performance of $k$-mer LASSO and metafeature ridge regression in 

predicting antibiotic class susceptibility/resistance on the internal 

test sets (30\% of full dataset). Results show f-measure, Matthew's 

correlations coefficient (MCC), sensitivity and specificity; also, the 

number of non-zero $k$-mer LASSO and positive metafeature ridge 

coefficients are shown.} 

\centering 

 

\resizebox{\textwidth}{!}{ 

\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c} 

\toprule  

 

&  & \multicolumn{5}{c}{\textbf{$k$-mer LASSO}} & 

\multicolumn{5}{|c}{\textbf{Metafeature ridge}} \\ 

\textbf{Antibiotic Class} & N (test) & \#feat. & F-measure & MCC   & 

Sens.    & Spec.    &  \#metaf. & F-measure &  MCC  & Sens.   & Spec. \\ 

\midrule 

Aminoglycosides             &  4,920 & 13,162 & \textbf{0.85} & 

\textbf{0.84} & \textbf{0.79} & \textbf{0.99} & 54 & 0.58 & 0.54 & 0.57 & 

0.97 \\ 

Betalactamases              &  36,052& 19,483 & \textbf{0.96} & 

\textbf{0.93} & \textbf{0.94} & \textbf{0.99}& 74 & 0.89      & 0.79  & 

0.83      & 0.96 \\ 

Drug and biocide resistance &  5,055 & 13,064 & 0.36      & 0.39  & 

\textbf{0.93} & \textbf{0.76} & 56 & \textbf{0.39} & \textbf{0.93} & 0.7 

& 0.66 \\ 

Fluoroquinolones            &  1,286 & 11,462 & \textbf{0.98} & 

\textbf{0.98} & \textbf{0.96} & \textbf{1} & 50 & 0.9 & 0.9  & 0.92      

& \textbf{1} \\ 

Glycopeptides               &  3,200 & 12,700 & \textbf{0.8}       & 

\textbf{0.8}   & 0.7       & \textbf{1}  & 54      & 0.23      & 0.27  & 

\textbf{0.84}     & 0.75 \\ 

Lipopeptides                &  1,084  & 12,356 & \textbf{0.85}      & 

\textbf{0.85}  & \textbf{0.76}      & \textbf{1} & 43      & 0.8 & 0.8 & 

0.73 & \textbf{1} \\ 

Macrolide-Lincosamide-Streptogramin &  2,210 & 14,064 & 0.2  & 0.28  & 

\textbf{0.93}   & 0.77 & 54   & \textbf{0.3}      & \textbf{0.29}  & 0.38 

& \textbf{0.97} \\ 

Multi-biocide resistance    &  1,412 & 12,304 & \textbf{0.13}      & 

\textbf{0.2}   & \textbf{0.88}      & \textbf{0.76} & 51   & 0.1       & 

0.16  & 0.78       & 0.73 \\ 

Multi-drug resistance       &  1,387 & 12,280 & \textbf{0.13}      & 

\textbf{0.21}  & \textbf{0.91}      & \textbf{0.77} & 48    & 0.11      & 

0.18  & 0.83      & 0.74 \\ 

Multi-metal resistance      &  2,407 & 13,179 & \textbf{0.21}      & 

\textbf{0.28}  & \textbf{0.92}      & \textbf{0.76} & 62    & 0.18      & 

0.25  & 0.9       & 0.73 \\ 

Phenicols                   &  922 & 11,115 & \textbf{0.74}      & 

\textbf{0.74}  & \textbf{0.66}      & \textbf{1} & 51    & 0.44      & 

0.44  & 0.53      & 0.99 \\ 

Sulfonamides                &  531 & 12,783 & \textbf{0.75}      & 

\textbf{0.78}  & 0.6       & 1 & 54       & \textbf{0.75}      & 0.77  & 

1         & 0.6 \\ 



Tetracyclines               &  4,208 & 14,286 & 0.86      & 0.85  & 0.8       

& 1   & 43   & 0.67      & 0.65  & 0.67      & 0.98 \\ 

\midrule  

\end{tabular} 

} %resize 

\smallskip 

\label{table1} 

\end{table*} 

 

\subsection*{AMR-meta generalizes robustly on external, semi-synthetic 

datasets} 

The PSS$_{mol}$ dataset includes twelve molecule labels incorporated into 

antibiotic classes, namely: ciprofloxacin and levofloxacin 

(Fluoroquinolones); gentamicin and amikacin (Aminoglycosides); 

ceftriaxone and ampicillin (Betalactamases); chloramphenicol (Phenicols); 

sulfisoxazole (Sulfonamides); erythromycin and azithromycin (MLS); 

tigecycline (Tetracyclines); and vancomycin (Glycopeptides). Performance 

results in terms of $S$-score, which summarizes the correct resistance 

and susceptible hits (the higher the better), are shown in Figure 

\ref{fig:PSSmolecule}. The median (IQR) $S$-score for the $k$-mer LASSO 

is 285.5 (123.5, 540), and for the metafeature regression is 322 (73, 

470). Meta-MARC scores 250 (72, 359.5), DeepARG scores 144.5 (43, 345), 

and AMRPlusPlus 2.0 scores -29 (-377.5, 210). Overall, our metafeature 

approach shows both the highest performance and stability, exhibiting 

also a positive score in the levofloxacine molecule, whereas all the 

other methods produce a negative score. The $k$-mer LASSO component ranks 

second, followed by the other off-the-shelf tools. 

 

\begin{figure*}[b] 

\centerline{\includegraphics[width=0.99\textwidth]{patric_ab_specific_sco

re_voting.class.calibrated.eps}} 

\caption{Performance of AMR-meta ($k$-mers and metafeatures) and of other 

off-the-shelf tools on the molecule-level PATRIC semi-synthetic data 

(PSS$_{mol}$). The $S$-score score is the difference between short read 

pairs predicted as resistant from the pooled resistant and susceptible 

genomes drawn from PATRIC.} 

\label{fig:PSSmolecule} 

\end{figure*} 

 

 

\subsection*{AMR-meta predictions complement those of existing 

algorithms} 

 

Next, we measure the correlation between the predictions of the two AMR-

meta modules and the ones from the other algorithms. As PSS$_{mol}$ does 

not have a per-gene defined ground truth, we assemble PSS$_{cla}$. The 

PSS$_{cla}$ dataset includes six out of the thirteen MEGARes classes, 

namely Aminoglycosides, Betalactamases, Fluoroquinolones, MLS, Phenicols, 

and Tetracyclines. PSS$_{cla}$ has instances from both positive 

(resistant) and negative (susceptible) genes. When we look at the class-

specific concordance for each pair of tools using the the Spearman's rank 

correlation (Figure \ref{fig:corr}), PSS$_{cla}$ shows that the 

algorithms behave differently. Specifically, DeepARG, Meta-MARC, and 

AMRPlusPlus 2.0 are highly correlated in most of antibiotic classes 



(range 0.59-0.92), while they have low correlation with the $k$-mer LASSO 

and the metafeature regression (range 0.04-0.12) --which in turn show 

mild-low correlation (range 0.12-0.49). Thus, both $k$-mer LASSO and 

metafeature regression stand distant from each other and the other 

methods. The PSS$_{cla}$ dataset is explicitly constructed to measure 

class-specific concordance, with very similar resistant and susceptible 

instances. However, for this reason, the PSS$_{cla}$ becomes by design a 

challenging dataset for classification, because the reads derived from 

susceptible genes all well align with other resistant genes in the same 

AMR class. Thus, the performance of all algorithms will tend to flatten. 

Nonetheless, the metafeature approach exhibits the highest median 

accuracy. Overall --pooling both resistant and susceptible for each AMR 

class-- the $k$-mer LASSO median (IQR) percent of correct predictions is 

44\% (35\%-48\%), the metafeature ridge 46\% (33\%-48\%), DeepARG 44\% 

(36\%-47\%), AMRPlusPlus 2.0 45\% (36\%-50\%), and Meta-MARC 44\% (36\%-

47\%). 

 

 

\begin{figure}[t] 

\centerline{\includegraphics[width=0.45\textwidth]{correlation.plots.3.ep

s}} 

\caption{Spearman's Rank correlation of the AMR classifiers on the PATRIC 

semi-synthetic data (PSS$_{cla}$).} 

\label{fig:corr} 

\end{figure} 

 

\subsection*{AMR-meta has lower false positive rate on negative examples 

than other algorithms} 

As a sensitivity analysis, to study how the different algorithms behave 

with the negative samples in PSS$_{cla}$, we sample the negative genomes 

based on their similarity with the positive ones, using increasing 

matching thresholds, i.e., 70\% to 75\%, 75+\% to 80\%, 80+\% to 85\%, 

and 85+\% to 90\%. The hypothesis is that the false positive rate 

correlates with the threshold, i.e., algorithms tend to mis-classify non-

AMR reads/genes that share high similarity with AMR genes. Since AMR-meta 

is specifically trained on both negative and positive examples, the 

expectation is that the algorithm will pick less false positives than 

other methods. We thus assemble datasets for each AMR class and for each 

of the four ranges of similarity percentage, with a cap of 250 random 

genomes per class. As expected, the false positive rate increases with 

similarity, and the metafeature model is the method with the lowest 

median false positive rate (0.02), followed by DeepARG (0.06), Meta-MARC 

(0.2), $k$-mer LASSO (0.23), and AMRPlusPlus (0.3). The full results, 

stratified by class and threshold ranges, are provided in Supplementary 

Figure S1. 

 

\subsection*{AMR-meta ensemble for functional genomics 

%Evaluation of real-world functional metagenomics datasets 

} 

 

The Soil and Pediatric datasets come from functional metagenomics 

experiments that by design guarantee the presence of antibiotic 

resistance in a sequence sample, since the sample is cultured on 

antibiotic-laden medium. However, sequenced reads can also contain other 



or unknown genes, which cannot be quantified. We consider here the hit 

rate, i.e. the proportion of sequence reads classified as resistant. 

Cautionary, a higher hit rate can signify that a method finds more AMR 

genes, but also that a method finds more false positives. Given that AMR-

meta is designed to decrease false positive rate, we expect it to be the 

most conservative. Yet, in order to identify empirically a tradeoff 

between the approaches, in addition to running each single model, we also 

built an ensemble using voting with $k$-mer LASSO, the metafeature 

regression, and the individual models' predictions as input features 

(requiring at least two concordant predictions for classifying 

resistance).\\ 

On Soil, the voting ensemble achieves the highest hit rate with a median 

(IQR) fraction of read pairs identified as resistant of 7.72\% (1.28\%-

10\%), followed by AMRPlusPlus 2.0 with 7.03\% (1.06\%-7.48\%), DeepARG 

with 6.27\% (1.21\%-7.32\%), Meta-MARC with 4.97\% (1.86\%-8.68\%), the 

$k$-mer approach with 1.94\% (0.7\%-2.49\%), and the metafeature approach 

with 0.08\% (0.01\%-0.65\%). On Pediatric, Meta-MARC achieves the highest 

hit rate with a median (IQR) of 8.51\% (2.29\%-28.14\%), followed by the 

$k$-mer approach with 0.27\% (0.2\%-4.8\%), the voting ensemble with 

0.27\% (0.05\%-4.97\%), AMRPlusPlus 2.0 with 0.2\% (0.02\%-11.95\%), 

DeepARG with 0.19\% (0.02\%-8.06\%), and the metafeature approach with 

0.01\% (0\%-0.4\%). We observe large variations in each method depending 

on the class considered. It has to be noted that Meta-MARC's threshold 

was previously re-calibrated on these datasets, and its standard 

threshold is much more conservative. As expected, the metafeature module 

is the most conservative on both datasets, while the voting ensemble 

offers a balanced alternative in all cases. Interestingly, the $k$-mer 

approach is one of the least conservative on the Pediatric set. Detailed 

results on the external Pediatric and Soil functional metagenomics 

datasets are illustrated in Figure \ref{fig:pediatric:soil}. 

 

\begin{figure*}[t] 

\centerline{\includegraphics[width=0.99\textwidth]{figure.soil.pediatric.

long.7.eps}} 

\caption{Percentage of sequence reads predicted resistant on the 

functional metagenomics data (Soil and Pediatric) by AMR-meta, off-the-

shelf tools, and their voting ensemble.} 

\label{fig:pediatric:soil} 

\end{figure*} 

 

\subsection*{Run-time comparison} 

To compare execution times, we create benchmark datasets of increasing 

size by selecting reads drawn the semi-synthetic PATRIC data (across all 

classes), generating files of 1GB, 2GB, 5GB, and 10GB of paired short 

read files. We run all algorithms on University of Florida's High 

Performance Cluster --HiPerGator 3.0-- using a single node, composed by 

four AMD Opteron 6378 cores, with 32GB of RAM.  Table \ref{tableTimes} 

show run times on the node. AMRPlusPlus 2.0 and MetAMR $k$-mer LASSO are 

the fastest tools, with a time of execution difference within minutes up 

to 5GB load. DeepARG is up to 3 times slower than MetAMR, and Meta-MARC 

is considerably slower (30-folds), hitting the 24-hour wall time for 

files larger than 1GB. 

 

\begin{table*}[t] 



\centering 

\caption{Running times (hh:mm:ss) of AMR classification tools on 

metagenomics short read data (reads drawn from the PATRIC datasets), 151 

bases, paired end, fastq format).} 

\resizebox{\textwidth}{!}{ 

\begin{tabular}{l|c|c|c|c|c} 

\toprule  

\textbf{File size (R1+R2)} & \textbf{\# of reads (R1+R2)}  & \textbf{AMR-

meta (k-mer)} & \textbf{AMRPlusPlus 2.0} & \textbf{Meta-MARC} & 

\textbf{DeepARG} \\ 

\midrule 

1GB & 1,584,451 & 00:22:16 & 00:21:19 & 16:26:27 & 00:53:01 \\ 

2GB & 3,168,014 & 00:43:37 & 00:49:40 & $>$24h & 01:38:55 \\ 

5GB & 7,924,402 & 01:47:24 & 01:35:47 & $>$24h & 03:41:06 \\ 

10GB & 15,851,366 & 03:32:46 & 02:48:43 & $>$24h & 11:42:16 \\ 

\midrule  

\end{tabular} 

} %resize 

\smallskip 

\label{tableTimes} 

\end{table*} 

 

\section*{Discussion} 

In this work, we present AMR-meta, an alignment-free, $k$-mer- and 

metafeature-based AMR classifier for short read metagenomics data. AMR-

meta uses an augmented training strategy based on non-AMR and AMR-

homologous genes, providing relevant classification performance increment 

across various antibiotic classes. 

 

Historically, the main objective of AMR characterization by metagenomics 

sequencing has been to identify known AMR genes, using comprehensive and 

up-to-date databases. However, the absence of non-AMR genes (negative 

examples) and of AMR-homologous sequences that do not have role in 

resistance can hamper AMR classification accuracy, and impact the trade-

off between sensitivity and specificity. Notably, there are metagenomics 

classification tools that exploited the negative-positive $k$-mer 

representation paradigm. For instance, Clark weighs differently $k$-mers 

that are found only in specific species, as compared to those that are 

shared by different species or genuses \cite{ounit2015clark}. Other 

studies, focused on full-genome analysis and based on in vitro 

susceptibility, have shown high discriminating ability and capacity to 

identify potential new resistance features 

\cite{drouin2019interpretable,kim2020vampr}. 

 

It is worth to mention that comparing different AMR tools can be 

challenging, because not all use the same ontology, or provide 

classifications at the same annotation level. For instance, Meta-MARC is 

trained on a self-determined similarity-based clustering of AMR genes, 

yet it is able to provide predictions at the mechanism/class/group level 

according to MEGARes ontology, matching the outputs of AMRPlusPlus 2.0 

and AMR-meta. Instead, DeepARG uses a unique set of AMR categories 

derived from the CARD and ARDB. At this point, comparison of tools 

requires making an arbitrary choice on the AMR ontology to be used, and 

on the annotation level (e.g. class rather than mechanism), potentially 



penalizing one approach over another, as we show in our semi-synthetic 

PATRIC datasets PSS$_{mol}$ and PSS$_{cla}$. In addition, summarizing 

results over antibiotic classes can also introduce bias, given the high 

class imbalance in terms of antibiotics, gene frequency, and the 

aforementioned heterogeneity of intra-class gene diversity. It is 

understandable that a unified AMR ontology is difficult to achieve, yet 

an effort of the community to create common, standardized protocols for 

benchmarking and comparison is warranted.  

 

One limitation of our approach is in the sample resistance/susceptibility 

annotation for validation and benchmark datasets. First, we label most of 

bacterial genes that do not match to MEGARes as drug-susceptible, whilst 

in reality these sequences might contain new, undiscovered AMR genes. 

Second, there might be inconsistencies with antibiogram results in 

PATRIC.  

 

Other limitations include the fact that we try only one metafeature 

approach --matrix factorization-- while other methods could be tested, 

e.g., sparse binary principal/independent component analysis. Finally, it 

is known that $k$-mer approaches are not very sensitive to mutations, 

while mutant genes can still carry resistance. 

 

Future development for AMR-meta includes new strategies to select 

positive/negative labelled examples (and mutant genes) can further 

improve the classification performance. As another perspective, given the 

availability of efficient data structures for $k$-mer modelling, the 

LASSO module of AMR-meta could also be efficiently implemented as 

standalone AMR classifier to process data from portable sequencers in 

real time using mobile devices \cite{oliva2020portable}. 

 

\section{Availability of source code and requirements} 

\begin{itemize} 

\item Project name: AMR-meta 

\item Project home page: \url{https://github.com/smarini/AMR-meta} 

\item \textcolor{red}{RRID: SCR\_022026} 

\item \textcolor{red}{biotoolsID: biotools:amr-meta} 

\item Operating system(s): Linux 

\item Programming language: Bash, R, C++ 

\item Other requirements: R packages Matrix, stringr, glmnet 

\item License: MIT 

\end{itemize} 

 

\section{Availability of supporting data and materials} 

As stated in the Methods, the data sets supporting the results of this 

article are obtainable from public sources, specifically Refseq, 

\href{https://www.ncbi.nlm.nih.gov/refseq/}{ncbi.nlm.nih.gov/refseq}; 

MEGARes, \href{https://megares.meglab.org/}{megares.meglab.org}; NCBI 

BioProject PRJNA244044, 

\href{https://www.ncbi.nlm.nih.gov/bioproject/244044}{ncbi.nlm.nih.gov/bi

oproject/244044}; NCBI BioProject PRJNA215106 

\href{https://www.ncbi.nlm.nih.gov/bioproject/215106}{ncbi.nlm.nih.gov/bi

oproject/215106}; and PATRIC, 

\href{https://patricbrc.org/}{patricbrc.org}. AMR-meta algorithm, 

including a containerized version via Singularity, is available at 



\href{https://github.com/smarini/AMR-meta}{github.com/smarini/AMR-meta}. 

\textcolor{red}{Snapshots of our code and other data further supporting 

this work, are openly available in the GigaScience respository, GigaDB 

\cite{GigaDB}.} 
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Abstract
Background Antimicrobial resistance (AMR) is a global health concern. High-throughput metagenomic sequencing of
microbial samples enables profiling of AMR genes through comparison with curated AMR databases. However,
performance of current methods are often hampered by database incompleteness, and presence of homology/homoplasy
with other non-AMR genes in sequenced samples.
Results We present AMR-meta, a database-free and alignment-free approach, based on k-mers, which combines
algebraic matrix factorization into metafeatures with regularized regression. Metafeatures capture multi-level gene
diversity across main antibiotic classes. AMR-meta takes in reads from metagenomic shotgun sequencing and outputs
predictions about whether those reads contribute to resistance against specific classes of antibiotics. In addition,
AMR-meta employs an augmented training strategy that joins an AMR gene database with non-AMR genes (used as
negative examples). We compare AMR-meta with AMRPlusPlus, DeepARG, and Meta-MARC, further testing their
ensemble via a voting system. In cross-validation, AMR-meta has a median (interquartile) f-score of 0.7 (0.2-0.9). On
semi-synthetic metagenomic data –external test– on average AMR-meta yields a 1.3-fold hit rate increase over existing
methods. In terms of run-time, AMR-meta is 3x faster than DeepARG and 30x faster than Meta-MARC, and as fast as
AMRPlusPlus. Finally, we note that differences in AMR ontologies and observed variance of all tools in classification
outputs call for further development on standardization of benchmarking data and protocols.
Conclusions AMR-meta is a fast, accurate classifier that exploits non-AMR negative sets to improve sensitivity and
specificity. The differences in AMR ontologies and the high variance of all tools in classification outputs call for the
deployment of standard benchmarking data and protocols, to fairly compare AMR prediction tools.
Key words: functional metagenomics; short reads; antimicrobial resistance; machine learning; matrix factorization

Introduction

Antimicrobial resistance (AMR) is the ability of microorgan-
isms to resist the effect of drugs targeted to eliminate them

[1], and is globally recognized as a threat to public health as it
makes treatment of microbial infections harder, increasing the
risk of disease spread and severity [2]. Data from 890 U.S. hos-
pitals collected on specific combinations of antibiotics and bac-
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Key Points

• AMR-meta is a novel, database-free and alignment-free approach, combining matrix factorization with a training strategy
including an AMR gene database plus non-AMR genes.

• On cross-validated results, AMR-meta has a median f-score of 0.7, while on external test sets it yields a 1.3-fold hit rate
increase over existing methods.

• AMR-met is 3x to 30x faster than state-of-the art algorithms.

teria show that AMR caused an estimated 622,390 infections in
2017 [3]. Treating infections caused by AMR is clinically chal-
lenging since it requires to identify which drugs the infecting
strain is susceptible to, and then to take a timely decision on
the therapy to use. Notably, AMR is not limited to healthcare,
as it represents a significant challenge also in animal and plant
health, and thus in the entire ecosystem [4]. Therefore, detect-
ing AMR in clinical, veterinarian, and botanical isolates is piv-
otal to curb the spread of AMR pathogens and reduce its impact.
Although culture-based methods can accurately detect AMR,
they are resource intensive with respect to trained personnel,
monetary cost, and time [5]. Moreover, since only a fraction of
bacterial species are cultivable with standard methods, culture-
based methods are only applicable to a small number of bac-
teria. For these reasons, whole genome and metagenomics
sequencing has become an increasingly prevalent method for
AMR characterization. The challenge that then arises is how to
accurately identify and quantify the AMR genes from such se-
quencing data. To accomplish this, a number of different meth-
ods have been proposed. Despite the concordance between in
silico genotypic and in vitro phenotypic resistance assessment,
the uptake of AMR prediction tools for routine healthcare has
been slow, and they showed discordant performance in clinical
settings [6].

AMR prediction methods for metagenomics rely on com-
parison to databases of AMR genes. Two comprehensive and
widely used of AMR databases are the Comprehensive Antibi-
otic Resistance Database (CARD) [7, 8] and MEGARes [9, 10].
CARD is thoroughly maintained, with monthly updates on AMR
determinants that have (i) an associated peer-reviewed scien-
tific publication, (ii) a DNA sequence available in GenBank, (iii)
clear experimental evidence of elevated minimum inhibitory
concentration over controls. Currently, CARD integrates over
3,000 reference sequences of AMR genes and over 1,500 sin-
gle nucleotide polymorphisms, knowledge on resistance mech-
anisms, and specific antibiotic classes. CARD uses a manually
curated process and ontology, named the Antibiotic Resistance
Ontology (ARO, github.com/arpcard/aro), which describes the
molecular relations of antibiotic resistance (e.g., acquired re-
sistance genes, drug targets, AMR mechanisms). MEGARes
[9] –and its most recent 2.0 update [10]– is a hand-curated
AMR database designed for high throughput sequencing data
processing. MEGARes includes CARD genes and variants, but
utilizes a different annotation structure. Specifically, it is a
multi-level hierarchy (type, mechanism, class, group) in the
form of a direct acyclic graph, ensuring that two higher level
ranks are not linked to the same lower level rank. MEGARes
annotation graph is therefore an optimal structure for ecolog-
ical profiling and construction of AMR classifiers because, for
example, it cannot result in conflicting sequence classification.
MEGARes 2.0 currently includes ∼8,000 genes. Major improve-
ments from its first release consist in the inclusion of antibac-
terial biocide and metal resistance genes.

For AMR classification of metagenomic samples from high-
throughput sequencing, one class of methods is based on the
use of sequence read aligners. One widely used tool in this cat-

egory is AMRPlusPlus [9], which aligns all reads to MEGARes
using Burrows-Wheeler Aligner (BWA) [11] and then post-
processes the alignment to identify the genes that have over
80% coverage from the alignment, providing the associated
AMR annotation in the output. AMRPlusPlus 2.0 [10] is an im-
proved version of AMRPlusPlus that is designed to be faster
for large-scale projects. AMRPlusPlus 2.0 provides a post-
alignment classification through the ResistomeAnalyzer (qual-
ity measure for nucleotide coverage of a reference sequence for
a given read) and the RarefactionAnalysis (assessment of se-
quencing depth) modules. It also incorporates prediction of
AMR due to single nucleotide polymorphisms in housekeep-
ing genes, using a curated set that matches CARD. Of note,
CARD also performs AMR prediction for housekeeping genes via
the Resistant Gene Identifier (RGI), available as a web-service
and a command-line application. Although alignment-based
methods have high precision [12], they can only classify reads
which align to known AMR genes. Given that existing AMR
databases are incomplete, a large portion of novel AMR genes
may go undetected.

Another class of methods for AMR characterization is
alignment-free, employing a variety of approaches including
substring (k-mer) matching and machine learning. ResFinder
[13] and KmerResistance [14] process metagenomic reads by
first constructing the set of all unique k-length subsequences
(called k-mer spectrum) from the dataset. ResFinder 4.0 com-
pares the set of unique k-mers to detect AMR genes and AMR-
related chromosomal gene mutations based on an reference
database built on a collection of chromosomal point mutations
in bacterial pathogens [15], resistance genes from the Antibi-
otic Resistance Genes Database (ARDB) [16] and other literature
sources [17]. The user is required to input a specific bacterial
species for which the resistance is searched. Eight bacterial
species are available. KmerResistance, as ResFinder, compares
the set of unique k-mers to an ad hoc gene AMR reference
database derived from literature [18, 19]. Specifically, Kmer-
Resistance uses exact co-occurring k-mer matching between
a query sequence and the database, with a “winner takes all”
strategy, i.e., multiple k-mer occurrences on different genes
are resolved by selecting the one with highest frequency. Next,
a quality measure of a whole AMR gene match is defined as a
probability function of coverage (i.e., fraction of the genome
covered by at least one k-mer) and depth (i.e., average num-
ber of times the k-mers in the match). Similar to alignment-
based methods, ResFinder and KmerResistance are also bound
to identifying genes that are found in a specified database,
and therefore, have limited ability to detect putative AMR se-
quences. Another limitation of the k-mer based approaches is
the low flexibility with respect to sequencing errors [14], pos-
sibly increasing false negative rates in sequence classification.

Other alignment-free methods use machine learning clas-
sifiers to identify putative and known AMR genes, such as Res-
fams [20] and Meta-MARC [12], both based on hierarchical
hidden Markov models (HMMs). Resfams [20] preprocesses
high-throughput sequences by assembling them and translat-
ing the resulting contigs into amino acid sequences. Meta-

https://www.github.com/arpcard/aro
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MARC can predict AMR for an input sequence (either a short
read or a longer assembled contig), according to the resis-
tance class, group, and mechanism hierarchy defined in the
MEGARes hierarchical data structure. Specifically, Meta-MARC
is an ensemble of HMMs, each trained on a group of genes from
MEGARes. A classification is performed by aggregating predic-
tions from the lowest level of the MEGARes annotation hier-
archy towards the highest level. Meta-MARC achieves better
sensitivity, specificity, fraction of classified high-throughput
sequence data, and number of AMR classes identified when
compared to alignment matches and Resfams. However, the
performance of Meta-MARC with short read data is worse than
classifying assembled contigs.

DeepARG [21] is a hybrid machine learning and alignment-
based approach that leverages convolutional deep learning net-
works. The alignment module first translates the input se-
quences to amino acids and using DIAMOND [22], and then
aligns the translated sequences to a custom AMR database cre-
ated by merging CARD, ARDB [16], and manually selected AMR
sequences from the Universal Protein Resource (UNIPROT). The
deep learning model then predicts the AMR class for all aligned
reads. Since the machine learning step is subsequent to the
alignment one, de facto DeepARG suffers from the limitations
of alignment-based AMR prediction algorithms.

For completeness, it is worth mentioning AMR gene iden-
tification methods that are not specifically designed for high-
throughput short read metagenomic data. These methods take
as input one or a combination of: single genes, specific genome
strains, genomic or proteomic variants, and/or protein primary,
secondary, or tertiary structures. Similar to the methods de-
scribed previously, these methods use alignment and/or ma-
chine learning paradigms [23, 24, 25, 26, 27, 28, 29, 30]. These
algorithms bind the user into performing one or more supple-
mentary pre-processing steps on metagenomics data, not in-
cluded into the algorithm, such as sequence alignment or as-
sembly, sequence translations into proteins, or protein struc-
ture prediction. Because of the required pre-processing, these
methods defy the very advantages provided by the alignment-
free design. For further reference, Hendriksen et al. [31] pro-
vide a comprehensive review.

While our work focuses on raw short-read AMR classifica-
tion, we duly note that in the wider field of computational mi-
crobiomics, a variety of bioinformatics approaches exist and
can be combined at different levels, from the characteriza-
tion of species diversity in commensal and pathogenic host-
ecological settings, to the identification of novel AMR genes or
genetic elements relevant to AMR mechanisms and evolution.
The de novo assembly methods can reconstruct complete AMR
genes from short read data, locate them within core genomes
or mobile elements, and assemble new genes that could be as-
sociated with phenotypic resistance; for example, the MegaHIT
project [32] assembled the world’s largest collection of gut mi-
crobiome genes with functional characterization. Also, the de
novo assembly methods can be used to preprocess raw short
read data for AMR classification [29]. Fast alignment meth-
ods can be used as well to quickly identify genetic signatures
or point mutations responsible for AMR, e.g., in housekeeping
genes, and map very large metagenomics samples to databases
of interest, such as 16S rRNA gene collections [33].

In this paper, we develop AMR-meta, a novel, alignment-
free, AMR classification approach for high-throughput metage-
nomic data, based on k-mers and matrix factorization of k-
mers. The matrix factorization produces a number of ‘metafea-
tures’ able to capture multiple levels of gene diversity within
broad AMR classes. Importantly, and differently from existing
methods, AMR-meta uses an augmented training strategy that
incorporates non-AMR genes as negative examples. We show
that our approach is competitive with state-of-the-art tools

(i.e., AMRPlusPlus 2.0, Meta-MARC, and DeepARG) in classifi-
cation performance and execution speed. Notably, AMR-meta
captures resistance mechanics complementary to those found
by other tools, which instead are more correlated to each other.

Methods

AMR-meta is trained and tested first on an internal dataset
that –differently from other approaches– includes both AMR
(named resistant) and non-AMR genes (named susceptible).
The AMR genes are taken from MEGARes 2.0 [10], while non-
AMR genes are chosen from Genbank’s RefSeq and include (a)
bacterial genes that are highly dissimilar to AMR genes, and
(b) AMR-homologous sequences, i.e. sequences highly simi-
lar to AMR genes, but not known to be associated to antibiotic
resistance. By including the non-AMR and AMR-homologous
sequences, we aim to decrease the false positive calls and
to increase the true negative rates. This internal dataset is
split into a 70/30 training/test ratio, and AMR-meta compo-
nents (k-mers and k-mer-derived metafeatures) are trained
and tested accordingly (all performance measures reported in
this paper are relative to test sets). Second, we generate two
semi-synthetic external datasets, drawing bacterial genomes
from the Pathosystems Resource Integration Center (PATRIC)
[34], and simulating short read data. We derive two PATRIC
datasets that represent drug resistance/susceptibility relative
to specific molecules or antibiotic classes, called PSSmol and
PSScla, respectively. This twofold design allows us to bench-
mark AMR-meta against other existing tools –AMRPlusPlus
2.0, Meta-MARC, and DeepARG– in a a flexible way, since their
outputs levels vary among antibiotic classes and more specific
mechanisms. We use PSSmol to score the AMR predictions, and
PSScla to estimate the concordance of AMR-meta class predic-
tions with those of other methods. Finally, we combine AMR-
meta with the other tools, and evaluate their predictions on two
functional metagenomic datasets that were sampled a clinical
and environmental setting. Our internal/external workflow is
summarized in Figure 1.

Feature encoding and prediction models

AMR-meta k-mer LASSO module
The baseline models of AMR-meta are logistic regressors –
one for each antibiotic class– that use raw k-mers as input.
Each model utilizes the whole class-specific k-mer spectrum
(derived from the collated positive/negative training datasets),
where each feature is a binary value, representing the pres-
ence or absence of a particular k-mer in the dataset. Given the
high-dimensionality of the k-mer spectrum, we use least ab-
solute shrinkage and selection operator (LASSO) regularization
to reduce the feature space, optimizing the shrinkage opera-
tor via cross-validation [35]. Given the heterogeneity in gene
diversity within each class, e.g. Betalactamases have higher
diversity than Floroquinolones, we also expect different cardi-
nality of non-zero coefficients among the class-specific k-mer
LASSO regressors.
AMR-meta metafeature ridge module
One possible problem with k-mer LASSO regression is that a
single linear combination of k-mer features might not be able
to explain the variance of the entire dataset, even if discrim-
ination performance is good for the majority of genes in one
class. A way to increase the portion of variance explained is
to use more than one linear combination, e.g., the first m-th
vectors of a principal component analysis. In this way, multi-
ple independent combinations of k-mers can more effectively
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Figure 1. AMR-meta training/test workflow. We assemble an internal dataset of AMR and non-AMR homologous genes from MEGARes and RefSeq genes, on which
AMR-meta models (k-mers, and metafeatures through matrix factorization) are trained and tested (70/30 split). AMR-meta and other AMR classification tools are
then externally tested on: (i) semi-synthetic data from PATRIC at both antibiotic class and molecule levels (PSScla and PSSmol); and (ii) functional metagenomics
data (Soil and Pediatric).

represent the genetic diversity within antibiotic classes.
Accordingly, we explore a space transformation –with con-

comitant dimension reduction– of the k-mer spectrum that
identifies a set of (orthogonal) multiple features, i.e., metafea-
tures, each as an independent combination of the original k-
mers contributing to a cumulative portion of the data vari-
ance. To do so, we apply a matrix factorization approach,
which has been previously shown apt to tackle complex feature
extraction problems, e.g., oncology and proteomics [36, 37].
The method is based on non-negative matrix tri-factorization
[38]. The algorithm identifies low-rank, non-negative matri-
ces whose product provides an approximation of the original
non-negative matrix.

Here we consider two data domains, namely k-mers and
genes. A k-mer is related to a gene if it is present in the
gene sequence. Let us denote the total number of genes
with g; the total number of k-mers with t; a matrix of r
rows and c columns having all values equal to zero with
∅r,c; and a matrix with one gene per row, and one k-mer
per column Rg,t with, and RTg,t as its transpose. We denote
the transpose of a matrix A with superscript T as AT in the
rest of this paper. We express the relation between the two
domains by a symmetrical, four-block matrix R = (∅g,g Rg,t

RTg,t ∅t,t
),

where non-diagonal block matrices represent the relation
(intersections) between k-mers and genes. Note that in this
context, the relation between elements is defined by design:
We set the value of a R at an entry to 1 if the corresponding
k-mer is present in the corresponding gene, and 0 otherwise.

We denote the number of k-mer metafeatures and the num-
ber of gene metafeatures as mt and mg, respectively. The fac-
torization procedure decomposes R into the product of three
matrices G, S, and GT, such that G × S × GT will approximate
R by reducing the error up to a user-defined lower bound set
as the difference between two consecutive iterations (denoted
with R ≈ GSGT). Here G represents the relation between the
original domains (genes, k-mers) and their metafeatures; and
S represents the relation between the metafeatures, i.e., how
one domain is mapped to the other. The matrices G and S have
the following form both expressed as four block matrices:
G = ( Gg,mg ∅g,mt

∅k,mg Gt,mt
) and S = ( Smg,mg Smg,mt

Smt,mg Smt,mt
).

We use the intersection between the data of the same
domain as constraints in the factorization process, i.e., each
domain has a block, symmetrical constraint. We define
the matrix Θ to represent the self-domain relations, i.e.,

gene/gene and k-mer/k-mer relations. Therefore, Θ is an
R × R matrix. The empty blocks of Θ are the non-diagonal
blocks. Θ = (Θg,g ∅g,t

∅t,g Θt,t
).

In Θ we set each entry to –1 if the corresponding row and
column elements share a relation; 1 if unrelated; and 0 if the
relation is unknown. In this application, in the Θt block we
consider each k-mer identical to itself (related, –1), while we
make no assumption about the relation with two different k-
mers (not related, 0). In the Θg block, we consider all the genes
of each class to be related (–1), and different from the genes of
other classes (1).

The goal of the factorization is to minimize the following
objective function:

minG≥0(G; S) = ∑ ||Rij – GiSijGtj|| + tr(GΘGt) (1)

where ||·|| indicates the Frobenius norm, and tr(·) indicates
the trace. The objective function is composed of two parts: The
first part measures the difference between the original matrix
and the product of the three factorized matrices; the second
part calculates the adherence of the factorized metafeatures
to the constraints, in our case based on the AMR resistance
class. The factorization process proceeds in an iterative fash-
ion until convergence to a local minimum, with convergence
heuristically defined by observing the value of the objective
function and the corresponding reconstruction error below a
user-defined threshold [38, 36, 37]. We fix a threshold of 10–2
as the difference between consecutive iterations, or reaching
5,000 iterations, as stop criteria. Previous works discuss the
method in detail [36, 37]; a dedicated github repository con-
tains code and user manual github.com/smarini/MaDDA. The
factorization process, calculated over the full length training
genes, produces Gt,mt , which is the matrix relating the k-mers
to their metafeatures. For each short read pair encoded as bi-
nary vector of k-mer occurrences sr1,t, we calculate its metafea-
tures as sr1,t×Gt,mt . Since the optimal number of metafeatures
can be hard to infer, and the sizes of the matrices grow with
the number of features [36, 37], for this application we used up
to mt = 100 and mg = 25 metafeatures. After factorization, we
feed the metafeatures to a logistic regression, optimizing the
coefficients with a ridge approach. Figure 2 provides a graphi-
cal representation of the factorization process.

https://www.github.com/smarini/MaDDA
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Figure 2. The matrix tri-factorization scheme. AMR, non-AMR, and AMR-
homologous genes are paired up with k-mers across all antibiotic resistance
classes into the R matrix, and the the dimension is reduced through the R ≈
GSGt factorization, where the metafeatures are extracted, revealing the AMR
similarity phenotypes in the θ matrix.

Training strategy

AMR genes.
We collate AMR genes from MEGARes 2.0 [10], constituting the
positive (resistant) reference sets on the basis of the MEGARes
annotation at the antibiotic class level. Of note, we exclude
housekeeping genes that confer resistance through single point
mutations.
Putative non-AMR bacterial genes.
We include putative non-AMR genes from the RefSeq database
[39]. Using BLAST, we select the 1,000 RefSeq bacterial genes
that do not match to MEGARes (e-value=10), aiming for a 1:1
target ratio with the antibiotic class of highest frequency. This
gene set has high genetic divergence from the AMR genes in
MEGARes, yet the nucleotide content is fully bacterial.
AMR-homologous human and vertebrate genes.
To mimic genes that likely do not provide AMR, but share a
significant similarity with AMR genes we assemble a dataset
selecting AMR-homologous genes and gene fragments from
the human genome (GRCh38), and all the contigs in RefSeq
labelled as ’vertebrate mammalian’ and ’vertebrate other’ as-
semblies. To do so, we run an ungapped BLAST search of all
MEGARes genes against these human and vertebrate sequences
(e-value=0.01). We use each unique sequence match, and add
the flanking region to each match, elongating the matched se-
quence to be equal in length to the corresponding resistant
MEGARes gene. Specifically, with a match of nmatch nucleotides
between target and query AMR gene, we extend the match by
nmatch2 nucleotides in both directions on the target MEGARes
sequence. The underlying assumption here is that matches
of bacterial AMR genes on vertebrate genomes are spurious or
not functional, and therefore do not provide AMR. Of note, this
setup is similar to the test set derivation presented in DeepARG
[21].
k-mer based and metafeature modelling.
All k-mers present in the genes of the training datasets, exclud-
ing any sample reserved for validation (see next subsection),
are considered and counted using different values of k, from
13 to 77 based on prior literature evidence [14]. The best value
for k is chosen incrementally on the basis of internal validation
performance, stopping when performance decreases. Next, we
stratify the training samples by class. We remove all k-mers
with a frequency less than a given cut-off f in a single class
(3 or 5 upon internal validation). We also exclude AMR classes

with with less than 10 k-mers after frequency filtering.
Simulation of metagenomic short read data for training.
We use the AMR datasets described above to generate short
reads, labelling each as resistant or susceptible to an antibi-
otic class. For each MEGARes class, we generate short read
datasets providing 10x base coverage of the original full-gene
data. These datasets allow the evaluation of both false positives
and false negatives.

External validation

We use four independent external datasets, two semi-synthetic
(made similarly to the training set), and two from functional
metagenomic experiments. As the prevalence of AMR and the
k-mer spectrum in the external test set is not guaranteed to
be balanced as in the training, we re-calibrate the k-mer and
metafeature probability threshold for external validation using
the internal validation dataset and a number of samples where
the k-mer and metafeature vectors are empty, i.e., they rep-
resent the non-AMR gene background. The ratio is optimized
between 1:0.05 and 1:10, picking the first that meets the cali-
bration target, i.e., a prediction with a score < 0.5 for a feature
vector without any k-mer belonging to our model.
Semi-synthetic datasets.
We create the semi-synthetic datasets from PATRIC, down-
loading via FTP full bacterial genomes and summary meta-
data [30, 23]. We retain only genomes annotated as suscep-
tible or resistant after an antibiogram test conform to the
Clinical & Laboratory Standards Institute (CLSI), which is the
most frequent testing standard in PATRIC, with over 55,000
resistant and 54,000 susceptible records [30]. Since the an-
tibiotic nomenclature in PATRIC is molecule-specific and does
not match exactly the MEGARes ontology hierarchy, we com-
pile a lookup table linking each PATRIC drug annotation to a
MEGARes class. We remove PATRIC genomes that do not refer
to the AMR classes considered in the training phases, or are not
included in the classes predicted by the concurrent methods.

We then generate two PATRIC semi-synthetic datasets
(PSS), based on PATRIC antibiotic molecule labels (PSSmol) and
MEGARes classes (PSScla), respectively.

We use PSSmol to assess the performance of our approach
and the concurrent methods on molecule-specific data. We
retain genomes are resistant (or susceptible) to at least one
MEGARes class. We rank the PATRIC drug labels based on num-
ber of associated genomes, and we select the top ones based on
the associated MEGARes classes. We exclude labels with less
than 250 genomes, or labels not referring to a specific molecule
(e.g., Tetracycline). We generate 250,000 short reads for each
PATRIC label, equally divided between resistant and suscepti-
ble. Note that for PSSmol, as the PATRIC labels refer to genome
(and not the specific gene, as in MEGARes), it is not possible
to determine the ground truth, i.e., if a short read comes from
a resistant or a susceptible gene. To assess methods’ perfor-
mances, in absence of such ground truth, we develop a scoring
system based on the assumption that a method should find
more resistant read pairs from resistant genomes, and less
from susceptible genomes. With srres,res defined as the number
of short read pairs coming from resistant genomes and classi-
fied as resistant, and with srres,sus as the number of short read
pairs coming from susceptible genomes and classified as resis-
tant, we define the S-score as S = srres,res – srres,sus. A higher
S-score thus denotes better performance, and a negative value
implies that the method finds more resistant short read pairs
among the susceptible ones.

PSScla is collated at the class level. Unlike PSSmol, each short
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read from PSScla has a known label which indicates if it comes
from a resistant or susceptible gene. To generate PSScla, first
we remove PATRIC genomes presenting inconsistent class an-
notations, i.e., that are annotated as both resistant and sus-
ceptible to antibiotics belonging to the same class. Second, in
order to consider only genomes that are resistant (or suscepti-
ble) to the range of antibiotics within a given MEGARes class,
we rank each genome in decreasing order of the total number of
annotations of resistance (or susceptibility) to multiple drugs
within the same class. Based on this ranking, we retain only
genomes that rank over the 90th percentile. Third, we per-
form a class-by-class BLAST filtering (e-value=0.01, percent
identity ∈ [70, 90]) of the selected PATRIC genomes against
MEGARes genes, retaining and clipping the unique genes of
PATRIC genomes that match MEGARes. The objective is to ex-
tract a set of PATRIC genes that match to MEGARes genes, but
are not exact matches. In fact, genes similar to known resis-
tant genes coming from antibiotic susceptible –by a phenotypic
test– genomes represent excellent candidates to test the abil-
ity of classifier to recognize true/false positives. From these
selected PATRIC genes, we generate short reads covering the
selected genes, and capping the number of resistant or suscep-
tible paired reads up to 100,000 per AMR class (i.e., 400,000
total reads per class). We reckon that with this procedure, we
are able to label uniquely each PATRIC instance that passes the
filter; however, in the BLAST alignment, there could be flank-
ing regions or inserts that produce artifact matches. Nonethe-
less, given the strict parameters used, we we deem these cases
to be rare. A resistant sample likely contains only resistant
reads, and vice-versa for a susceptible sample. Therefore, it
is possible to calculate sample-wide performance by counting
the proportion of resistant-within-resistant and susceptible-
within-susceptible reads in each test sample. After filtering,
Glycopeptides and Lipopeptides are excluded as there are less
than fifteen resistant genomes. Sulfonamides are excluded as
no susceptible genomes is retained by our filtering procedure.
Functional metagenomics data.

We benchmarked our method against two functional metage-
nomic datasets, which we refer to as the Pediatric and the Soil
datasets (NCBI BioProject Accessions PRJNA244044 and PR-
JNA215106). A functional metagenomics experiments is made
by cloning metagenomic DNA fragments into bacterial vectors
grown on antibiotic-laden media. The cultured bacteria surviv-
ing the antibiotic are sequenced using a clonally amplified high-
throughput sequence library. As per experimental design, for
each fosmid, all sequence reads contain at least one AMR gene
(known or not yet discovered) resistant to a known antibiotic.
Therefore, each sequencing experiment has a known antibiotic
resistance label. However, since the original metagenomics
fragments can be longer than a single AMR gene, a single fos-
mid might contain multiple AMR genes, or contain unknown
genes. The Pediatric and Soil datasets include fosmids from
Escherichia coli (DH10B) and consist of of 219 and 169 sam-
ples with an average of 1.98 and 1.12 million paired-end short
reads respectively, sequenced with Illumina Genome Analyzer
IIx technology. We utilize the aforementioned PATRIC anno-
tation lookup table to pair antibiotic annotations to MEGARes
classes. For testing classifiers’ performance, we randomly se-
lect 100,000 short read pairs for each class as for the PATRIC
datasets.

Software and hardware setup

We process the training/validation data, the semi-synthetic
PSSmol and PSScla datasets, and the experimental functional
metagenomics data through in house UNIX scripts, off-the-

shelf bioinformatics tools including BLAST, R (r-project.org/),
and Bioconductor (bioconductor.org/). The k-mer LASSO and
the metafeature regression are developed in R, bash, and
C++. We download the functional metagenomics datasets
using NCBI’s sra-toolkit. For short read generation, we
use InSilicoSeq [40], simulating Illumina’s NovaSeq (com-
pany’s top-line production scale sequencing instrument) reads
with default parameters. We exclude genes shorter than
151 bases (length of NovaSeq’s short reads) from the sim-
ulations. Code and R scripts are available publicly at
github.com/smarini/AMR-meta under the MIT license.

Results

AMR-meta provides competitive prediction perfor-
mance on multiple AMR classes

We generate thirteen datasets, corresponding to the an-
tibiotic classes (according to the MEGARes ontology) of:
Aminoglycosides, Betalactamases, Drug and biocide resistance,
Fluoroquinolones, Glycopeptides, Lipopeptides, Macrolide-
Lincosamide-Streptogramin (MLS), Multi-biocide resistance,
Multi-drug resistance, Multi-metal-resistance, Phenicols,
Sulfonamides, and Tetracyclines. We exclude classes with less
than 10 k-mers after frequency filtering. Upon internal vali-
dation, the best k-mer length k and frequency threshold f are
13 and 5, respectively (the performance decreases at k=31 and
for f=3 with the same or higher k). Upon optimization of the k
value, the total number of unique 13-mers is 138,260, and the
median (interquartile range, IQR) number per class is 3,645
(1,658-7,168). The matrix factorization includes 5,175 training
genes, yielding a matrix R of 138,260 + 5,175 = 143,435 rows and
columns, and a k-mer/metafeature matrix of 138, 260× 100 el-
ements.

Table 1 shows the class-specific performance summaries
by k-mer and metafeature regression on the internal valida-
tion sets. On the internal validation set, the k-mer LASSO
and the metafeature regression exhibit a good tradeoff between
sensitivity and specificity at both k values. The median (IQR)
number of features selected by k-mer LASSO is 12,783 (12,304
and 13,179). As expected, the highest number of non-zero co-
efficients is found in the Betalactamase class, which is the
class with higher diversity and number of resistant genes in
MEGARes. The same holds for the highest number of metafea-
tures with positive coefficients (note that each metafeature is
derived from the matrix factorization described above, incor-
porating several hundred thousands k-mer/gene elements). In
terms of performance, for LASSO, the median (IQR) f-measure
across all classes is 0.7 (0.2-0.9), while for the metafeature
regression, the median f-measure is 0.4 (0.2-0.7). For both
methods, the best performing classes are Betalactamases, and
Fluoroquinolones, while the most problematic are MLS, and
Multi-biocide, -drug, and -metal resistance. Despite the k-
mer LASSO having a higher median f-measure, the metafea-
ture regression performs better in the problematic MLS and
Drug and biocide classes, shows better sensitivity in Glycopep-
tides, and better Specificity in Fluoroquinolones and Lipope-
tides. For reference comparison, the median (IQR) f-measure
across classes is 0.5 (0.3-0.7) for DeepARG, and 0.9 (0.9-1.0)
for Meta-MARC, based on the original papers’ validation re-
sults. AMRPlusPlus 2.0 does not report per-class results on
test sets.

https://www.r-project.org/
https://www.bioconductor.org/
https://www.github.com/smarini/AMR-meta
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Table 1. Performance of k-mer LASSO and metafeature ridge regression in predicting antibiotic class susceptibility/resistance on the internaltest sets (30% of full dataset). Results show f-measure, Matthew’s correlations coefficient (MCC), sensitivity and specificity; also, thenumber of non-zero k-mer LASSO and positive metafeature ridge coefficients are shown.
k-mer LASSO Metafeature ridge

Antibiotic Class N (test) #feat. F-measure MCC Sens. Spec. #metaf. F-measure MCC Sens. Spec.
Aminoglycosides 4,920 13,162 0.85 0.84 0.79 0.99 54 0.58 0.54 0.57 0.97
Betalactamases 36,052 19,483 0.96 0.93 0.94 0.99 74 0.89 0.79 0.83 0.96
Drug and biocide resistance 5,055 13,064 0.36 0.39 0.93 0.76 56 0.39 0.93 0.7 0.66
Fluoroquinolones 1,286 11,462 0.98 0.98 0.96 1 50 0.9 0.9 0.92 1
Glycopeptides 3,200 12,700 0.8 0.8 0.7 1 54 0.23 0.27 0.84 0.75
Lipopeptides 1,084 12,356 0.85 0.85 0.76 1 43 0.8 0.8 0.73 1
Macrolide-Lincosamide-Streptogramin 2,210 14,064 0.2 0.28 0.93 0.77 54 0.3 0.29 0.38 0.97
Multi-biocide resistance 1,412 12,304 0.13 0.2 0.88 0.76 51 0.1 0.16 0.78 0.73
Multi-drug resistance 1,387 12,280 0.13 0.21 0.91 0.77 48 0.11 0.18 0.83 0.74
Multi-metal resistance 2,407 13,179 0.21 0.28 0.92 0.76 62 0.18 0.25 0.9 0.73
Phenicols 922 11,115 0.74 0.74 0.66 1 51 0.44 0.44 0.53 0.99
Sulfonamides 531 12,783 0.75 0.78 0.6 1 54 0.75 0.77 1 0.6
Tetracyclines 4,208 14,286 0.86 0.85 0.8 1 43 0.67 0.65 0.67 0.98

AMR-meta generalizes robustly on external, semi-
synthetic datasets

The PSSmol dataset includes twelve molecule labels incor-
porated into antibiotic classes, namely: ciprofloxacin and
levofloxacin (Fluoroquinolones); gentamicin and amikacin
(Aminoglycosides); ceftriaxone and ampicillin (Betalacta-
mases); chloramphenicol (Phenicols); sulfisoxazole (Sulfon-
amides); erythromycin and azithromycin (MLS); tigecycline
(Tetracyclines); and vancomycin (Glycopeptides). Performance
results in terms of S-score, which summarizes the correct re-
sistance and susceptible hits (the higher the better), are shown
in Figure 3. The median (IQR) S-score for the k-mer LASSO is
285.5 (123.5, 540), and for the metafeature regression is 322
(73, 470). Meta-MARC scores 250 (72, 359.5), DeepARG scores
144.5 (43, 345), and AMRPlusPlus 2.0 scores -29 (-377.5, 210).
Overall, our metafeature approach shows both the highest per-
formance and stability, exhibiting also a positive score in the
levofloxacine molecule, whereas all the other methods produce
a negative score. The k-mer LASSO component ranks second,
followed by the other off-the-shelf tools.

AMR-meta predictions complement those of existing
algorithms

Next, we measure the correlation between the predictions of
the two AMR-meta modules and the ones from the other algo-
rithms. As PSSmol does not have a per-gene defined ground
truth, we assemble PSScla. The PSScla dataset includes six
out of the thirteen MEGARes classes, namely Aminoglycosides,
Betalactamases, Fluoroquinolones, MLS, Phenicols, and Tetra-
cyclines. PSScla has instances from both positive (resistant)
and negative (susceptible) genes. When we look at the class-
specific concordance for each pair of tools using the the Spear-
man’s rank correlation (Figure 4), PSScla shows that the algo-
rithms behave differently. Specifically, DeepARG, Meta-MARC,
and AMRPlusPlus 2.0 are highly correlated in most of antibi-
otic classes (range 0.59-0.92), while they have low correlation
with the k-mer LASSO and the metafeature regression (range
0.04-0.12) –which in turn show mild-low correlation (range
0.12-0.49). Thus, both k-mer LASSO and metafeature regres-
sion stand distant from each other and the other methods.
The PSScla dataset is explicitly constructed to measure class-
specific concordance, with very similar resistant and suscep-
tible instances. However, for this reason, the PSScla becomes
by design a challenging dataset for classification, because the
reads derived from susceptible genes all well align with other
resistant genes in the same AMR class. Thus, the performance
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Figure 3. Performance of AMR-meta (k-mers and metafeatures) and of other off-the-shelf tools on the molecule-level PATRIC semi-synthetic data (PSSmol). The
S-score score is the difference between short read pairs predicted as resistant from the pooled resistant and susceptible genomes drawn from PATRIC.
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Figure 4. Spearman’s Rank correlation of the AMR classifiers on the PATRIC
semi-synthetic data (PSScla).

of all algorithms will tend to flatten. Nonetheless, the metafea-
ture approach exhibits the highest median accuracy. Overall
–pooling both resistant and susceptible for each AMR class–
the k-mer LASSO median (IQR) percent of correct predictions
is 44% (35%-48%), the metafeature ridge 46% (33%-48%),
DeepARG 44% (36%-47%), AMRPlusPlus 2.0 45% (36%-50%),
and Meta-MARC 44% (36%-47%).

AMR-meta has lower false positive rate on negative
examples than other algorithms

As a sensitivity analysis, to study how the different algorithms
behave with the negative samples in PSScla, we sample the
negative genomes based on their similarity with the positive
ones, using increasing matching thresholds, i.e., 70% to 75%,
75+% to 80%, 80+% to 85%, and 85+% to 90%. The hypoth-
esis is that the false positive rate correlates with the thresh-
old, i.e., algorithms tend to mis-classify non-AMR reads/genes
that share high similarity with AMR genes. Since AMR-meta
is specifically trained on both negative and positive examples,
the expectation is that the algorithm will pick less false posi-
tives than other methods. We thus assemble datasets for each
AMR class and for each of the four ranges of similarity per-
centage, with a cap of 250 random genomes per class. As ex-
pected, the false positive rate increases with similarity, and the
metafeature model is the method with the lowest median false
positive rate (0.02), followed by DeepARG (0.06), Meta-MARC
(0.2), k-mer LASSO (0.23), and AMRPlusPlus (0.3). The full re-
sults, stratified by class and threshold ranges, are provided in
Supplementary Figure S1.

AMR-meta ensemble for functional genomics

The Soil and Pediatric datasets come from functional metage-
nomics experiments that by design guarantee the presence of
antibiotic resistance in a sequence sample, since the sample
is cultured on antibiotic-laden medium. However, sequenced
reads can also contain other or unknown genes, which cannot
be quantified. We consider here the hit rate, i.e. the proportion
of sequence reads classified as resistant. Cautionary, a higher
hit rate can signify that a method finds more AMR genes, but
also that a method finds more false positives. Given that AMR-
meta is designed to decrease false positive rate, we expect it
to be the most conservative. Yet, in order to identify empiri-
cally a tradeoff between the approaches, in addition to running
each single model, we also built an ensemble using voting with
k-mer LASSO, the metafeature regression, and the individual
models’ predictions as input features (requiring at least two
concordant predictions for classifying resistance).
On Soil, the voting ensemble achieves the highest hit rate
with a median (IQR) fraction of read pairs identified as resis-
tant of 7.72% (1.28%-10%), followed by AMRPlusPlus 2.0 with
7.03% (1.06%-7.48%), DeepARG with 6.27% (1.21%-7.32%),
Meta-MARC with 4.97% (1.86%-8.68%), the k-mer approach
with 1.94% (0.7%-2.49%), and the metafeature approach with
0.08% (0.01%-0.65%). On Pediatric, Meta-MARC achieves the
highest hit rate with a median (IQR) of 8.51% (2.29%-28.14%),
followed by the k-mer approach with 0.27% (0.2%-4.8%),
the voting ensemble with 0.27% (0.05%-4.97%), AMRPlusPlus
2.0 with 0.2% (0.02%-11.95%), DeepARG with 0.19% (0.02%-
8.06%), and the metafeature approach with 0.01% (0%-0.4%).
We observe large variations in each method depending on the
class considered. It has to be noted that Meta-MARC’s thresh-
old was previously re-calibrated on these datasets, and its stan-
dard threshold is much more conservative. As expected, the
metafeature module is the most conservative on both datasets,
while the voting ensemble offers a balanced alternative in all
cases. Interestingly, the k-mer approach is one of the least
conservative on the Pediatric set. Detailed results on the ex-
ternal Pediatric and Soil functional metagenomics datasets are
illustrated in Figure 5.

Run-time comparison

To compare execution times, we create benchmark datasets of
increasing size by selecting reads drawn the semi-synthetic
PATRIC data (across all classes), generating files of 1GB, 2GB,
5GB, and 10GB of paired short read files. We run all algo-
rithms on University of Florida’s High Performance Cluster –
HiPerGator 3.0– using a single node, composed by four AMD
Opteron 6378 cores, with 32GB of RAM. Table 2 show run times
on the node. AMRPlusPlus 2.0 and MetAMR k-mer LASSO are
the fastest tools, with a time of execution difference within
minutes up to 5GB load. DeepARG is up to 3 times slower than
MetAMR, and Meta-MARC is considerably slower (30-folds),
hitting the 24-hour wall time for files larger than 1GB.

Discussion

In this work, we present AMR-meta, an alignment-free, k-
mer- and metafeature-based AMR classifier for short read
metagenomics data. AMR-meta uses an augmented training
strategy based on non-AMR and AMR-homologous genes, pro-
viding relevant classification performance increment across
various antibiotic classes.

Historically, the main objective of AMR characterization by
metagenomics sequencing has been to identify known AMR
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Figure 5. Percentage of sequence reads predicted resistant on the functional metagenomics data (Soil and Pediatric) by AMR-meta, off-the-shelf tools, and their
voting ensemble.

Table 2. Running times (hh:mm:ss) of AMR classification tools on metagenomics short read data (reads drawn from the PATRIC datasets),151 bases, paired end, fastq format).
File size (R1+R2) # of reads (R1+R2) AMR-meta (k-mer) AMRPlusPlus 2.0 Meta-MARC DeepARG

1GB 1,584,451 00:22:16 00:21:19 16:26:27 00:53:01
2GB 3,168,014 00:43:37 00:49:40 >24h 01:38:55
5GB 7,924,402 01:47:24 01:35:47 >24h 03:41:06
10GB 15,851,366 03:32:46 02:48:43 >24h 11:42:16

genes, using comprehensive and up-to-date databases. How-
ever, the absence of non-AMR genes (negative examples) and
of AMR-homologous sequences that do not have role in re-
sistance can hamper AMR classification accuracy, and impact
the trade-off between sensitivity and specificity. Notably,
there are metagenomics classification tools that exploited the
negative-positive k-mer representation paradigm. For in-
stance, Clark weighs differently k-mers that are found only
in specific species, as compared to those that are shared by
different species or genuses [41]. Other studies, focused on
full-genome analysis and based on in vitro susceptibility, have
shown high discriminating ability and capacity to identify po-
tential new resistance features [27, 29].

It is worth to mention that comparing different AMR tools
can be challenging, because not all use the same ontology, or
provide classifications at the same annotation level. For in-
stance, Meta-MARC is trained on a self-determined similarity-
based clustering of AMR genes, yet it is able to provide
predictions at the mechanism/class/group level according to
MEGARes ontology, matching the outputs of AMRPlusPlus 2.0
and AMR-meta. Instead, DeepARG uses a unique set of AMR
categories derived from the CARD and ARDB. At this point, com-
parison of tools requires making an arbitrary choice on the
AMR ontology to be used, and on the annotation level (e.g.
class rather than mechanism), potentially penalizing one ap-
proach over another, as we show in our semi-synthetic PATRIC
datasets PSSmol and PSScla. In addition, summarizing results
over antibiotic classes can also introduce bias, given the high
class imbalance in terms of antibiotics, gene frequency, and

the aforementioned heterogeneity of intra-class gene diversity.
It is understandable that a unified AMR ontology is difficult
to achieve, yet an effort of the community to create common,
standardized protocols for benchmarking and comparison is
warranted.

One limitation of our approach is in the sample resis-
tance/susceptibility annotation for validation and benchmark
datasets. First, we label most of bacterial genes that do not
match to MEGARes as drug-susceptible, whilst in reality these
sequences might contain new, undiscovered AMR genes. Sec-
ond, there might be inconsistencies with antibiogram results
in PATRIC.

Other limitations include the fact that we try only
one metafeature approach –matrix factorization– while
other methods could be tested, e.g., sparse binary princi-
pal/independent component analysis. Finally, it is known that
k-mer approaches are not very sensitive to mutations, while
mutant genes can still carry resistance.

Future development for AMR-meta includes new strate-
gies to select positive/negative labelled examples (and mu-
tant genes) can further improve the classification performance.
As another perspective, given the availability of efficient data
structures for k-mer modelling, the LASSO module of AMR-
meta could also be efficiently implemented as standalone AMR
classifier to process data from portable sequencers in real time
using mobile devices [42].
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Availability of source code and requirements

• Project name: AMR-meta
• Project home page: https://github.com/smarini/AMR-meta
• RRID: SCR_022026
• biotoolsID: biotools:amr-meta
• Operating system(s): Linux
• Programming language: Bash, R, C++
• Other requirements: R packages Matrix, stringr, glmnet
• License: MIT

Availability of supporting data and materials

As stated in the Methods, the data sets supporting the
results of this article are obtainable from public sources,
specifically Refseq, ncbi.nlm.nih.gov/refseq; MEGARes,
megares.meglab.org; NCBI BioProject PRJNA244044,
ncbi.nlm.nih.gov/bioproject/244044; NCBI BioProject
PRJNA215106 ncbi.nlm.nih.gov/bioproject/215106; and
PATRIC, patricbrc.org. AMR-meta algorithm, including
a containerized version via Singularity, is available at
github.com/smarini/AMR-meta. Snapshots of our code and
other data further supporting this work, are openly available
in the GigaScience respository, GigaDB [43].
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